服务器扫盲篇-程序员宅基地

技术标签: 扩展  产品  英特尔  x86  服务器  step 脚印@job  工作  

1, 服务器之CPU篇http://bbs.ccidnet.com/read.php?tid=241002
1、多线程


同时多线程Simultaneous multithreading,简称SMT。SMT可通过复制 处理器上的结构状态,让同一个 处理器上的多个线程同步执行并共享 处理器的执行资源,可最大限度地实现宽发射、乱序的超标量处理,提高 处理器运算部件的利用率,缓和由于数据相关或Cache未命中带来的访问内存延时。当没有多个线程可用时,SMT 处理器几乎和传统的宽发射超标量 处理器一样。SMT最具吸引力的是只需小规模改变 处理器核心的设计,几乎不用增加额外的成本就可以显著地提升效能。多线程技术则可以为高速的运算核心准备更多的待处理数据,减少运算核心的闲置时间。这对于桌面低端系统来说无疑十分具有吸引力。Intel从3.06GHz Pentium 4开始,所有 处理器都将支持SMT技术。


2、多核心


多核心,也指单芯片多 处理器(Chip multiprocessors,简称CMP)。CMP是由美国斯坦福大学提出的,其思想是将大规模并行 处理器中的SMP(对称多 处理器)集成到同一芯片内,各个 处理器并行执行不同的进程。与CMP比较, SMT 处理器结构的灵活性比较突出。但是,当半导体工艺进入0.18微米以后,线延时已经超过了门延迟,要求微 处理器的设计通过划分许多规模更小、局部性更好的基本单元结构来进行。相比之下,由于CMP结构已经被划分成多个 处理器核来设计,每个核都比较简单,有利于优化设计,因此更有发展前途。目前,IBM 的Power 4芯片和Sun的 MAJC5200芯片都采用了CMP结构。多核 处理器可以在 处理器内部共享缓存,提高缓存利用率,同时简化多 处理器系统设计的复杂度。


2005年下半年,Intel和AMD的新型 处理器也将融入CMP结构。新安腾 处理器开发代码为Montecito,采用双核心设计,拥有最少18MB片内缓存,采取90nm工艺制造,它的设计绝对称得上是对当今芯片业的挑战。它的每个单独的核心都拥有独立的L1,L2和L3 cache,包含大约10亿支晶体管。


3、SMP


SMP(Symmetric Multi-Processing),对称多处理结构的简称,是指在一个计算机上汇集了一组 处理器(多CPU),各CPU之间共享内存子系统以及总线结构。在这种技术的支持下,一个服务器系统可以同时运行多个 处理器,并共享内存和其他的主机资源。像双至强,也就是我们所说的二路,这是在对称 处理器系统中最常见的一种(至强MP可以支持到四路,AMD Opteron可以支持1-8路)。也有少数是16路的。但是一般来讲,SMP结构的机器可扩展性较差,很难做到100个以上多 处理器,常规的一般是8个到16个,不过这对于多数的用户来说已经够用了。在高性能服务器和工作站级主板架构中最为常见,像UNIX服务器可支持最多256个CPU的系统。


构建一套SMP系统的必要条件是:支持SMP的硬件包括主板和CPU;支持SMP的系统平台,再就是支持SMP的应用软件。


为 了能够使得SMP系统发挥高效的性能,操作系统必须支持SMP系统,如WINNT、LINUX、以及UNIX等等32位操作系统。即能够进行多任务和多线 程处理。多任务是指操作系统能够在同一时间让不同的CPU完成不同的任务;多线程是指操作系统能够使得不同的CPU并行的完成同一个任务。


要 组建SMP系统,对所选的CPU有很高的要求,首先、CPU内部必须内置APIC(Advanced Programmable Interrupt Controllers)单元。Intel 多处理规范的核心就是高级可编程中断控制器(Advanced Programmable Interrupt Controllers--APICs)的使用;再次,相同的产品型号,同样类型的CPU核心,完全相同的运行频率;最后,尽可能保持相同的产品序列编 号,因为两个生产批次的CPU作为双 处理器运行的时候,有可能会发生一颗CPU负担过高,而另一颗负担很少的情况,无法发挥最大性能,更糟糕的是可能导致死机。


4、NUMA技术


NUMA 即非一致访问分布共享存储技术,它是由若干通过高速专用网络连接起来的独立节点构成的系统,各个节点可以是单个的CPU或是SMP系统。在NUMA中, Cache 的一致性有多种解决方案,需要操作系统和特殊软件的支持。图2中是Sequent公司NUMA系统的例子。这里有3个SMP模块用高速专用网络联起来,组 成一个节点,每个节点可以有12个CPU。像Sequent的系统最多可以达到64个CPU甚至256个CPU。显然,这是在SMP的基础上,再用 NUMA的技术加以扩展,是这两种技术的结合。


5、乱序执行技术


乱序执行(out-of- orderexecution),是指CPU允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理的技术。这样将根据个电路单元的状态和各指令 能否提前执行的具体情况分析后,将能提前执行的指令立即发送给相应电路单元执行,在这期间不按规定顺序执行指令,然后由重新排列单元将各执行单元结果按指 令顺序重新排列。采用乱序执行技术的目的是为了使CPU内部电路满负荷运转并相应提高了CPU的运行程序的速度。分枝技术:(branch)指令进行运算 时需要等待结果,一般无条件分枝只需要按指令顺序执行,而条件分枝必须根据处理后的结果,再决定是否按原先顺序进行。


6、CPU内部的内存控制器


许 多应用程序拥有更为复杂的读取模式(几乎是随机地,特别是当cache hit不可预测的时候),并且没有有效地利用带宽。典型的这类应用程序就是业务处理软件,即使拥有如乱序执行(out of order execution)这样的CPU特性,也会受内存延迟的限制。这样CPU必须得等到运算所需数据被除数装载完成才能执行指令(无论这些数据来自CPU cache还是主内存系统)。当前低段系统的内存延迟大约是120-150ns,而CPU速度则达到了3GHz以上,一次单独的内存请求可能会浪费200 -300次CPU循环。即使在缓存命中率(cache hit rate)达到99%的情况下,CPU也可能会花50%的时间来等待内存请求的结束- 比如因为内存延迟的缘故。


你可以看到Opteron整合的内存控制器,它的延迟,与芯片组支持双通道DDR内存控制器的延迟相比来说,是要低很多的。英特尔也按照计划的那样在 处理器内部整合内存控制器,这样导致北桥芯片将变得不那么重要。但改变了 处理器访问主存的方式,有助于提高带宽、降低内存延时和提升 处理器性能。

2, 什么是刀片服务器http://bbs.ccidnet.com/read.php?tid=235351
在新的形势下,节约空间、便于集中管理、易于扩展和提供不间断的服务,成为对下一代服务器的新要求,而性能空间比,也成为衡量服务器的一个重要标准。在这 种情况下,刀片服务器成为很多企业的最佳选择。目前,刀片服务器发展迅速,并逐渐走向规模应用,刀片服务器市场也一直保持着良好的上升势头,刀片服务器的 普及以为时不远。


什么是“刀片服务器”呢? 所谓刀片服务器是指在标准高度的机架式机箱内可插装多个卡式的服务器单元,是一种实现HAHD(High AvaiMabiMity High Density,高可用高密度)的低成本服务器平台,为特殊应用行业和高密度计算环境专门设计。顾名思义,刀片服务器就像“刀片”一样,每一块“刀片”实 际上就是一块系统主板。它们可以通过"板载"硬盘启动自己的操作系统,如Windows NT/2000、Linux等,每一块“刀片”就是一个独立的服务器,在这种模式下,每一块“刀片”运行自己的系统,服务于指定的不同用户群,相互之间没 有关联。不过,管理员可以使用系统软件将这些“刀片”集合成一个服务器集群。在集群模式下,所有的“刀片”可以连接起来提供高速的网络环境,并同时共享资 源,为相同的用户群服务。在集群中插入新的“刀片”,就可以提高整体性能。而由于每块“刀片”都是热插拔的,所以,系统可以轻松地进行替换,并且将维护时 间减少到最小。这些服务器可共用系统背板、冗余电源、冗余风扇、网络端口、光驱、软驱、键盘、显示器和鼠标,一个机箱对外就是一台服务器,而且多个刀片机 箱还可以级联,形成更大的集群系统。


刀片服务器的设计特点,使其具有很多优点。刀片服务器的低功耗设计,能节省大量能源,减少能 耗。占用空间小,高密度计算的方式有效地节约了空间,对于机房空间紧张或者服务器托管的企业来说无疑节约了很多的空间成本。刀片服务器采用集中管理的方 式,可以简化服务器的管理工作,减少维护费用。最后,采用刀片服务器来构造服务器集群,易于维护管理,是最适合用来构造集群的,可以说它从根本上克服了芯 片服务器集群的缺点,被称为集群的终结者。


按照所需要承担的服务器功能,刀片服务器被分成服务器刀片、网络刀片、存储刀片、管理 刀片、光纤通道SAN刀片、扩展I/O刀片等几种,各种刀片承担系统中不同的功能,可以说,刀片服务器的发展趋势必然是从单纯的“服务器整合”发展到可以 集成企业的存储、网络以及交换设备的核心构件。同时,由于多台分散服务器的管理将集中到一台服务器的管理,因此也会大大降低IT管理的人员成本,实现IT 基础设施简化,提高管理效率。


刀片服务器的应用范围非常广泛,尤其是对于那些要求高密度计算的应用。目前,电信、政府、教育和金融是中国刀片服务器的主要应用行业,四个行业共占约75%的市场份额。这些行业需要高性能的计算环境、便捷的管理和低廉的整体成本,刀片服务器可以很好的满足他们的需求。

在 国内刀片服务器市场上,ibm、hp是市场中主要的产品供应商,从销售额上看,IBM、HP在刀片服务器市场占据了绝大部分市场份额,而国内品牌仅占很小 的份额,据统计,去年刀片服务器市场上IBM市场占有率为42.0%,HP市场占有率达到了35.8%,而国内厂商“联想”、“浪潮”、“宝德”等所占市 场份额均小于2%。在刀片服务器日益普及的形势下,国内刀片服务器厂商要想取得好的成绩,还需付出更多的努力。

3, 服务器基本术语
CISC架构服务器
  CISC的英文全称为“ Complex Instruction Set Computer”,即“复杂指令系统计算机”,从计算机诞生以来,人们一直沿用CISC指令集方式。早期的桌面软件是按CISC设计的,并一直沿续到现 在,所以,微处理器(CPU)厂商一直在走CISC的发展道路,包括Intel、AMD,还有其他一些现在已经更名的厂商,如TI(德州仪器)、 Cyrix以及VIA(威盛)等。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点 是控制简单,但计算机各部分的 利用率不高,执行速度慢。CISC架构的服务器主要以IA-32架构(Intel Architecture,英特尔架构)为主,而且多数为 中低档服务器所采用。

  如果企业的应用都是基于NT平台的应用,那么服务 器的选择基本上就定位于IA架构(CISC架构)的服务器。如果企业的应用主要是基于Linux操作系统,那么服务器的选择也是基于IA结构的服务器。如 果应用必须是基于Solaris的,那么服务器只能选择SUN服务器。如果应用基于AIX(IBM的Unix操作系统)的,那么只能选择IBM Unix服务器(RISC架构服务器)。

RISC架构服务器
  RISC的英文全称为“ Reduced Instruction Set Computing”,中文即“精简指令集”,它的指令系统相对简单,它只要求硬件执行很有限且最常用的那部分执令,大部分复杂的操作则使用成熟的编译技 术,由简单指令合成。目前在中高档服务器中普遍采用这一指令系统的CPU,特别是 高档服务器全都采用RISC指令系统的CPU。在中高档服务器中采用 RISC指令的CPU主要有Compaq(康柏,即新惠普)公司的Alpha、HP公司的PA-RISC、IBM公司的Power PC、MIPS公司的MIPS和SUN公司的Spare。

VLIW架构服务器
  VLIW是英文“ Very Long Instruction Word”的缩写,中文意思是“超长指令集架构”,VLIW架构采用了先进的 EPIC(清晰并行指令)设计,我们也把这种构架叫做“IA-64架构”。每 时钟周期例如IA-64可运行20条指令,而CISC通常只能运行1-3条指令,RISC能运行4条指令,可见VLIW要比CISC和RISC强大的多。 VLIW的最大优点是简化了处理器的结构,删除了处理器内部许多复杂的控制电路,这些电路通常是超标量芯片(CISC和RISC)协调并行工作时必须使用 的,VLIW的结构简单,也能够使其芯片制造成本降低,价格低廉,能耗少,而且性能也要比超标量芯片高得多。目前基于这种指令架构的微处理器主要有 Intel的IA-64和AMD的x86-64两种。

通用型服务器
  通用型服务器是没有为某种特殊服务专门设计的、可以 提供各种服务功能的服务器,当前大多数服务器是通用型服务器。这类服务器因为不是专为某一功能而设计,所以在设计时就要兼顾多方面的应用需要,服务器的结 构就相对较为复杂,而且要求性能较高,当然在价格上也就更贵些。

专用型服务器
  专用型(或称“功能型”)服务器是专门为 某一种或某几种功能专门设计的服务器。在某些方面与通用型服务器不同。如光盘镜像服务器主要是用来存放光盘镜像文件的,在服务器性能上也就需要具有相应的 功能与之相适应。光盘镜像服务器需要配备大容量、高速的硬盘以及光盘镜像软件。FTP服务器主要用于在网上(包括Intranet和Internet)进 行文件传输,这就要求服务器在硬盘稳定性、存取速度、I/O(输入/输出)带宽方面具有明显优势。而E-mail服务器则主要是要求服务器配置高速宽带上 网工具,硬盘容量要大等。这些功能型的服务器的性能要求比较低,因为它只需要满足某些需要的功能应用即可,所以结构比较简单,采用单CPU结构即可;在稳 定性、扩展性等方面要求不高,价格也便宜许多,相当于2台左右的高性能计算机价格。HP的一款Web服务器HP access server,它采用的是PIII1.13Gbit/s左右的CPU,内存标准配置也只有128MB/256MB,与一台性能较好的普通计算机差不多,但 在某些方它还是具有PC机无可替代的优势。

  台式服务器
  台式服务器也称为“塔式服务器”。有的台式服务器采用大小与 普通立式计算机大致相当的机箱,有的采用大容量的机箱,像个硕大的柜子。低档服务器由于功能较弱,整个服务器的内部结构比较简单,所以机箱不大,都采用台 式机箱结构。这里所介绍的台式不是平时普通计算机中的台式,立式机箱也属于台式机范围,目前这类服务器在整个服务器市场中占有相当大的份额。

 机架式服务器
  机架式服务器的外形看来不像计算机,而像交换机,有1U(1U=1.75英寸=4.45CM)、2U、4U等规格。机架式服务器安装在标准的19英寸机柜里面。这种结构的多为功能型服务器。

   对于信息服务企业(如ISP/ICP/ISV/IDC)而言,选择服务器时首先要考虑服务器的体积、功耗、发热量等物理参数,因为信息服务企业通常使用 大型专用机房统一部署和管理大量的服务器资源,机房通常设有严密的保安措施、良好的冷却系统、多重备份的供电系统,其机房的造价相当昂贵。如何在有限的空 间内部署更多的服务器直接关系到企业的服务成本,通常选用机械尺寸符合19英寸工业标准的机架式服务器。机架式服务器也有多种规格,例如1U (4.45cm高)、2U、4U、6U、8U等。通常1U的机架式服务器最节省空间,但性能和可扩展性较差,适合一些业务相对固定的使用领域。4U以上的 产品性能较高,可扩展性好,一般支持4个以上的高性能处理器和大量的标准热插拔部件。管理也十分方便,厂商通常提供人相应的管理和监控工具,适合大访问量 的关键应用,但体积较大,空间利用率不高。
服务器术语]-- 机柜式服务器
  在一些高档企业服务器中由于内部结构复杂,内部设备较多,有的还具有许多不同的设备单元或几个服务器都放在一个机柜中,这种服务器就是机柜式服务器。

  对于证券、银行、邮电等重要企业,则应采用具有完备的故障自修复能力的系统,关键部件应采用冗余措施,对于关键业务使用的服务器也可以采用双机热备份高可用系统或者是高性能计算机,这样的系统可用性就可以得到很好的保证。

 刀片式服务器
   是专门为特殊应用行业和高密度计算机环境设计的,其中每一块“刀片”实际上就是一块系统母板,类似于一个个独立的服务器。在这种模式下,每一个母板运行 自己的系统,服务于指定的不同用户群,相互之间没有关联。不过可以使用系统软件将这些母板集合成一个服务器集群。在集群模式下,所有的母板可以连接起来提 供高速的网络环境,可以共享资源,为相同的用户群服务。当前市场上的刀片式服务器有两大类:一类主要为电信行业设计,接口标准和尺寸规格符合PICMG (PCI Industrial Computer Manufacturers Group)1.x或2.x,未来还将推出符合PICMG 3.x 的产品,采用相同标准的不同厂商的刀片和机柜在理论上可以互相兼容;另一类为通用计算设计,接口上可能采用了上述标准或厂商标准,但 尺寸规格是厂商自定,注重性能价格比,目前属于这一类的产品居多。刀片式服务器目前最适合群集计算和IxP提供互联网服务。

 IA服务器
   通常将采用Intel(英特尔)处理器的服务器称之为IA(Intel Architecture)架构服务器,又称CISC(Complex Instruction Set Computer复杂指令集)架构服务器,由于IA架构的服务器是基于PC的体系结构,所以又把IA架构的服务器称为PC服务器。如联想的万全系列服务 器,HP公司的Netserver系列服务器等。

  由于该架构服务器采用了开放式体系,以"小、巧、稳"为特点,凭借可靠的性能、 低廉的价格,并且实现了工业标准化技术和得到国内外大量软硬件供应商的支持,在大批量生产的基础上,以其极高的性能价格比而在全球范围内,尤其在我国得到 广泛的应用。在互联网和局域网内更多的完成文件服务、打印服务、通讯服务、WEB服务、电子邮件服务、数据库服务、应用服务等主要应用。

  虽然IA构架服务器始于PC,但经过不断的发展,IA架构服务器已经远远超出了PC的概念,它在如下几个方面不同于PC。

  在CPU处理能力方面
   由于服务器要将其数据、硬件提供给网络共享,在运行网络应用程序时要处理大量的数据。因此要求CPU要有很强的处理能力。大多数IA架构的服务器采用多 CPU对称处理技术,多颗CPU共同进行数据运算,大大地提高了服务器的计算能力,满足学校的教学、多媒体应用方面的需求。而普通电脑PC基本上都配置的 是单颗CPU,所以PC在数据处理能力上比起服务器当然要差许多了。如果用PC充当服务器,在日常应用中就会经常发生死机、停滞或启动很慢等现象。

  在I/O(输入输出)性能方面
   在中小型企业或校园网络应用中,经常有许多的用户同时访问服务器,网络上存在着大量多媒体信息的传输,要求服务器的I/O(输入/输出)性能要强大。服 务器上采用了SCSI卡、RAID卡、高速网卡、内存中继器等设备,大大提高了服务器I/O能力。因为PC是个人电脑,无需提供额外的网络服务,因此在 PC上很少使用高性能的I/O技术,和服务器相比其I/O性能自然相差甚远。

  在安全可靠性方面
  由于服务器是网络中的核心设备,因此它必须具备高可靠性、安全性。服务器采用专用的ECC内存、RAID技术、热插拔技术、冗余电源(如下图所示)、冗余风扇等方法使服务器具备容错能力、安全保护能力。

   服务器需保证长时间连续运行。多长的时间算长时间呢?不同的服务器有不同的标准。一般来说,对工作组级服务器的要求是在工作时间(每天8小时,每周5 天)内没有故障;对部门级服务器的要求是每天24小时、每周5天内没有故障;而对企业级服务器的要求是最高的,要求全年365天、每天24小时都要保证没 有故障,也就是说,服务器随时可用。而PC是针对个人用户而设计的,因此在安全、可靠性方面PC要远远低于服务器。如果用PC作为服务器,那么在日常应用 中出现停机或发生数据丢失的现象自然是不可避免的了。

  在扩展性方面
  随着网络信息化应用的不断成熟,我们必然会面临 网络设备的扩充和升级问题。服务器具备较多的扩展插槽、较多的驱动器支架及较大的硬盘、内存扩展能力,使得用户的网络扩充时,服务器也能满足新的需求,保 护了设备投资成本。如图2所示的服务器主板,具有数量高达8个之多的内存插槽,最高支持16GB的内存,这样的扩充能力是PC无可比拟的。

  在可管理性方面
   从软、硬件的设计上,服务器具备较完善的管理能力。多数服务器在主板上集成了各种传感器,用于检测服务器上的各种硬件设备,同时配合相应管理软件,可以 远程监测服务器,从而使网络管理员对服务器系统进行及时有效的管理。有的管理软件可以远程检测服务器主板上的传感器记录的信号,对服务器进行远程的监测和 资源分配。而PC由于其应用场合较为简单,所以没有较完善的硬件管理系统。对于缺乏专业技术人员来说,选用可管理性强的服务器可以免去许多烦恼。

  配件适用机型
  适用机型是指该服务器配件所适用的具体机型系列或型号。从稳定性和兼容性等角度考虑,品牌服务器基本上都要求采用特定的配件,这主要是由其服务器主板所决定的。

配件产品类型
  产品类型是指该服务器配件的具体产品类型。例如ECC内存、CPU、磁盘阵列卡、SCSI硬盘、网卡、显示器、服务器机箱和电源等相关配件。下面对主要的配件做个简单的介绍。

  ECC内存
   ECC并非象常见的PC133,DDR400那样是内存的传输标准, ECC内存是具有错误校验和纠错功能的内存。ECC是 Error Checking and Correcting的简称,它也是通过在原来的数据位上额外增加数据位来实现的。如8位数据,则需1位用于Parity(奇偶校验)检验,5位用于 ECC,这额外的5位是用来重建错误的数据的。当数据的位数增加一倍,Parity也增加一倍,而ECC只需增加一位,所以当数据为64位时所用的ECC 和Parity位数相同(都为8)。在那些Parity只能检测到错误的地方,ECC可以纠正绝大多数错误。若工作正常时,你不会发觉你的数据出过错,只 有经过内存的纠错后,计算机的操作指令才可以继续执行。当然在纠错时系统的性能有着明显降低,不过这种纠错对服务器等应用而言是十分重要的,ECC内存的 价格比普通内存要昂贵许多。

  磁盘阵列卡
  磁盘阵列(Disk Array)是由一个硬盘控制器来控制多个硬盘的相互连接,使多个硬盘的读写同步,减少错误,增加效率和可靠度的技术。磁盘阵列卡则是实现这一技术的硬件 产品,磁盘阵列卡拥有一个专门的处理器,还拥有专门的存贮器,用于高速缓冲数据。通过使用磁盘阵列卡,服务器对磁盘的操作就直接通过磁盘阵列卡来进行处 理,因此不需要大量的CPU及系统内存资源,不会降低磁盘子系统的性能。磁盘阵列卡使用专用的处理单元来进行操作,它的性能要远远高于常规非阵列硬盘,并 且更安全更稳定。

  机箱和电源
  相对于普通ATX机箱,服务器机箱有如下特点:
  1)材料散热性好:为了 保证服务器稳定的工作,一般情况下服务器的工作环境要求干燥、凉爽。为了达到这个要求,服务器机箱的选料就马虎不得了。普通PC使用的机箱一般是采用钢 板,而服务器机箱使用的材料一般有两种—全铝质和铝合金。也有用钢板、镁铝合金作为材料的机箱。

  2)预留风扇位多:由于服务器发 出的热量通常很大,因此空气很快变热。能否尽快有效地排出这些热空气将是服务器稳定工作的前提条件。一般的普通PC机箱中散热风扇口只有2~3个,分别在 机箱的正面挡板的内部与背部挡板的内部。而服务器机箱需要更多的排风口,而且各个排风口针对系统不同的发热源进行散热。

  3)通风 系统良好:为了达到散热的效果,服务器机箱除了要安装多个风扇外,机箱内的散热系统也是非同寻常的。一般情况下在服务器机箱背面有两个风扇位,可以供我们 安装两个风扇。当然这两个风扇不是都是吹风的,而是一吹一抽形成一个良好的散热循环系统将机箱内的热空气迅速抽出,以降低机箱内的温度。

   4)具有冗余性:为了保证服务器不间断的工作,冗余技术使用于机箱内的绝大部分配件上,当然风扇也不例外。为了确保机箱内良好的散热系统不因为某一个或 几个风扇坏了而被破坏,现在很多的服务器机箱都采用了自动切换的冗余风扇。系统工作正常时,主风扇工作,备用风扇不工作,当主风扇出现故障或转速低于规定 转速时,自动启动备用风扇。备用风扇平时处于停转状态,从保证在工作风扇损坏时马上接替服务,不会造成由于系统风扇损坏而使系统内部温度升高产生工作不稳 定或停机现象。

  相对于普通ATX电源,服务器电源也具有额定功率大,输出稳定、波动小,输出接头种类和数量多,具有冗余性等等特点。

  服务器CPU
  与普通台式机CPU相比,服务器CPU具有如下特点:

  1)极高的稳定性和可靠性:因为大多数的高性能服务器都要满足全年365天、每天24小时的满负荷工作要求,因此稳定性和可靠性是普通台式机CPU远远无法相比的。

   2)支持多CPU并行处理:因为服务器数据处理量很大,需要采用多CPU并行处理结构,即一台服务器中安装2、4、8等多个CPU。为了实现这样的目 的,需要在设计CUP时就加以考虑和支持,普通台式机的CPU一般不具备这样的条件,需要注意的是,并行结构需要的CPU必须为偶数个。

  3)强大的处理能力:在处理速度、多任务性能等方面都远高于普通CPU。与普通CPU相比,其核心类型、流水线架构、指令集、接口针脚数等等都不相同,而且采用了大容量的二级甚至三级高速缓存以提高数据命中率。
   

硬盘转速
   转速(Rotationl Speed),是硬盘内电机主轴的旋转速度,也就是硬盘盘片在一分钟内所能完成的最大转数。转速的快慢是标示硬盘档次的重要参数之一,它是决定硬盘内部传 输率的关键因素之一,在很大程度上直接影响到硬盘的速度。硬盘的转速越快,硬盘寻找文件的速度也就越快,相对的硬盘的传输速度也就得到了提高。硬盘转速以 每分钟多少转来表示,单位表示为RPM,RPM是Revolutions Perminute的缩写,是转/每分钟。RPM值越大,内部传输率就越快,访问时间就越短,硬盘的整体性能也就越好。

  硬盘的主轴马达带动盘片高速旋转,产生浮力使磁头飘浮在盘片上方。要将所要存取资料的扇区带到磁头下方,转速越快,则等待时间也就越短。因此转速在很大程度上决定了硬盘的速度。

   家用的普通硬盘的转速一般有5400rpm、7200rpm几种,高转速硬盘也是现在台式机用户的首选;而对于笔记本用户则是4200rpm、 5400rpm为主,虽然已经有公司发布了7200rpm的笔记本硬盘,但在市场中还较为少见;服务器用户对硬盘性能要求最高,服务器中使用的SCSI硬 盘转速基本都采用10000rpm,甚至还有15000rpm的,性能要超出家用产品很多。

  较高的转速可缩短硬盘的平均寻道时间 和实际读写时间,但随着硬盘转速的不断提高也带来了温度升高、电机主轴磨损加大、工作噪音增大等负面影响。笔记本硬盘转速低于台式机硬盘,一定程度上是受 到这个因素的影响。笔记本内部空间狭小,笔记本硬盘的尺寸(2.5寸)也被设计的比台式机硬盘(3.5寸)小,转速提高造成的温度上升,对笔记本本身的散 热性能提出了更高的要求;噪音变大,又必须采取必要的降噪措施,这些都对笔记本硬盘制造技术提出了更多的要求。同时转速的提高,而其它的维持不变,则意味 着电机的功耗将增大,单位时间内消耗的电就越多,电池的工作时间缩短,这样笔记本的便携性就受到影响。所以笔记本硬盘一般都采用相对较低转速的 4200rpm硬盘。

  转速是随着硬盘电机的提高而改变的,现在液态轴承马达(Fluid dynamic bearing motors)已全面代替了传统的滚珠轴承马达。液态轴承马达通常是应用于精密机械工业上,它使用的是黏膜液油轴承,以油膜代替滚珠。这样可以避免金属面 的直接磨擦,将噪声及温度被减至最低;同时油膜可有效吸收震动,使抗震能力得到提高;更可减少磨损,提高寿命。

  EM64T技术
   包括CPU和内存2方面技术,是针对英特尔的EM64T技术CPU是一个扩展、可以兼容32位的64位处理器。目前只有配备800MHz 前端总线的英特尔至强处理器支持EM64T。因为现在操作系统和应用软件等还没有完全过渡到64位,所以现在提供的硬件平台不光是64位的,还要能够兼容 32位。在不久的将来,当使用的操作系统和应用软件都是64位的时候,用户就能享受这种真正的64位应用。针对英特尔的EM64T技术的内存是一种增强服 务器和工作站、使之具有64位寻址功能和相关指令的新技术。

  在下列条件下,32位和64位模式可用,仍然可以在应用英特尔扩展内存64技术的英特尔处理器上运行32位应用程序!

   其实,真正的64位技术的实现不仅仅依赖于硬件厂商,还需要操作系统厂商同步;操作系统厂商准备好了,还需要ISV(独立软件开发商)的64位化。只有 这三方都准备好了,才能实现真正的64位应用。现在大量的应用还都是在32位上,Intel推出EM64T,可以说是一个平滑的过渡平台。现在的情况是, 用户运行的操作系统和应用软件大多是32位,在EM64T上可以发挥出它的极限,表现出最好的水平;当操作系统和应用程序出现32位和64位共存时,它也 可以再突破32位的限制,在一台机器上运行这两种软件;当操作系统和应用程序全部过渡到64位以后,用户就可以享受到全部的64位应用。

  SMP
  SMP的全称是"对称多处理"(Symmetrical Multi-Processing)技术,是指在一个计算机上汇集了一组处理器(多CPU),各CPU之间共享内存子系统以及总线结构。

   它是相对非对称多处理技术而言的、应用十分广泛的并行技术。在这种架构中,一台电脑不再由单个CPU组成,而同时由多个处理器运行操作系统的单一复本, 并共享内存和一台计算机的其他资源。虽然同时使用多个CPU,但是从管理的角度来看,它们的表现就像一台单机一样。系统将任务队列对称地分布于多个CPU 之上,从而极大地提高了整个系统的数据处理能力。所有的处理器都可以平等地访问内存、I/O和外部中断。在对称多处理系统中,系统资源被系统中所有CPU 共享,工作负载能够均匀地分配到所有可用处理器之上。

  我们平时所说的双CPU系统,实际上是对称多处理系统中最常见的一种,通常 称为"2路对称多处理",它在普通的商业、家庭应用之中并没有太多实际用途,但在专业制作,如3DMax Studio、Photoshop等软件应用中获得了非常良好的性能表现,是组建廉价工作站的良好伙伴。随着用户应用水平的提高,只使用单个的处理器确实 已经很难满足实际应用的需求,因而各服务器厂商纷纷通过采用对称多处理系统来解决这一矛盾。在国内市场上这类机型的处理器一般以4个或8个为主,有少数是 16个处理器。但是一般来讲,SMP结构的机器可扩展性较差,很难做到100个以上多处理器,常规的一般是8个到16个,不过这对于多数的用户来说已经够 用了。这种机器的好处在于它的使用方式和微机或工作站的区别不大,编程的变化相对来说比较小,原来用微机工作站编写的程序如果要移植到SMP机器上使用, 改动起来也相对比较容易。SMP结构的机型可用性比较差。因为4个或8个处理器共享一个操作系统和一个存储器,一旦操作系统出现了问题,整个机器就完全瘫 痪掉了。而且由于这个机器的可扩展性较差,不容易保护用户的投资。但是这类机型技术比较成熟,相应的软件也比较多,因此现在国内市场上推出的并行机大量都 是这一种。PC服务器中最常见的对称多处理系统通常采用2路、4路、6路或8路处理器。目前UNIX服务器可支持最多64个CPU的系统,如Sun公司的 产品Enterprise 10000。SMP系统中最关键的技术是如何更好地解决多个处理器的相互通讯和协调问题。

  要组建 SMP系统,首先最关键的一点就是需要合适的CPU相配合。我们平时看到的CPU都是单颗使用,所以看不出来它们有什么区别,但是,实际上,支持SMP功 能并不是没有条件的,随意拿几块CPU来就可以建立多处理系统那简直是天方夜谈。要实现SMP功能,我们使用的CPU必须具备以下要求:

   1、 CPU内部必须内置APIC(Advanced Programmable Interrupt Controllers)单元。Intel 多处理规范的核心就是高级可编程中断控制器(Advanced Programmable Interrupt Controllers--APICs)的使用。CPU通过彼此发送中断来完成它们之间的通信。通过给中断附加动作(actions),不同的CPU可以 在某种程度上彼此进行控制。每个CPU有自己的APIC(成为那个CPU的本地APIC),并且还有一个I/O APIC来处理由I/O设备引起的中断,这个I/O APIC是安装在主板上的,但每个CPU上的APIC则不可或缺,否则将无法处理多CPU之间的中断协调。

  2、 相同的产品型号,同样类型的CPU核心。例如,虽然Athlon和Pentium III各自都内置有APIC单元,想要让它们一起建立SMP系统是不可能的,当然,即使是Celeron和Pentium III,那样的可能性也为0,甚至Coppermine核心的Pentium III和Tualatin的Pentium III也不能建立SMP系统--这是因为他们的运行指令不完全相同,APIC中断协调差异也很大。

  3、 完全相同的运行频率。如果要建立双Pentium III系统,必须两颗866MHz或者两颗1000MHz处理器,不可以用一颗866MHz,另一颗1000MHz来组建,否则系统将无法正常点亮。

   4、 尽可能保持相同的产品序列编号。即使是同样核心的相同频率处理器,由于生产批次不同也会造成不可思议的问题。两个生产批次的CPU作为双处理器运行的时 候,有可能会发生一颗CPU负担过高,而另一颗负担很少的情况,无法发挥最大性能,更糟糕的是可能导致死机,因此,应该尽可能选择同一批生产的处理器来组 建SMP系统。

4, 全方位了解服务器 CPU ---- 参数篇

1.主频

  主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运 行速度,这不仅是个片面的,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的数值关系,即使 是两大处理器厂家Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像 其他的处理器厂家,有人曾经拿过一快1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。

所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品 中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟2.66 GHz Xeon/Opteron一样快,或是1.5 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。

  当然,主频和实际的运算速度是有关的,只能说主频仅仅是CPU性能表现的一个方面,而不代表CPU的整体性能。

2.外频

  外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超 CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主 板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的 不稳定。

目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面的前端总线介绍我们谈谈两者的区别。

3.前端总线(FSB)频率

  前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率× 数据带宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照 公式,它的数据传输最大带宽是6.4GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说, 100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷ 8Byte/bit=800MB/s。

其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA- 32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端 总线带宽可达到4.3GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更 有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了。

4、CPU的位和字长

  位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是 “0”或是“1”在CPU中都是 一“位”。

  字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就 叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。 字节和字长的区别:由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字长的长度是不固定的,对于不同的CPU、字长的长度也不 一样。8位的CPU一次只能处理一个字节,而32位的CPU一次就能处理4个字节,同理字长为64位的CPU一次可以处理8个字节。

5.倍频系数

  倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提 下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应— CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。

6.缓存

  缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理 器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的 命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。

L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响 较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的 L1缓存的容量通常在32—256KB。

  L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部 的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是512KB,而服务器和工作站上用 CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。

L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存 延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提 升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件 系统缓存行为及较短消息和处理器队列长度。

其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在 主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是 P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。

但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。

7.CPU扩展指令集

  CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要 指标,指令集是提高微处理器效率的最有效工具之一。从现阶段的主流体系结构讲,指令集可分为复杂指令集和精简指令集两部分,而从具体运用看,如Intel 的MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的扩展指令集,分别增强了CPU的多媒体、图形图象和Internet等的处理能力。我们通常会把 CPU的扩展指令集称为"CPU的指令集"。SSE3指令集也是目前规模最小的指令集,此前MMX包含有57条命令,SSE包含有50条命令,SSE2包 含有144条命令,SSE3包含有13条命令。目前SSE3也是最先进的指令集,英特尔Prescott处理器 已经支持SSE3指令集,AMD会在未来双核心处理器当中加入对SSE3指令集的支持,全美达的处理器也将支持这一指令集。

8.CPU内核和I/O工作电压

  从586CPU开始,CPU的工作电压分为内核电压和I/O电压两种,通常CPU的核心电压小于等于I/O电压。其中内核电压的 大小是根据CPU的生产工艺而定,一般制作工艺越小,内核工作电压越低;I/O电压一般都在1.6~5V。低电压能解决耗电过大和发热过高的问题。

9.制造工艺

  制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同 样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。现在主要的180nm、130nm、90nm。最近官方已经表示有65nm的制造工艺了。

10.指令集

(1)CISC指令集

  CISC指令集,也称为复杂指令集,英文名是CISC,(Complex Instruction Set Computer的缩写)。在CISC微处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点是控制 简单,但计算机各部分的利用率不高,执行速度慢。其实它是英特尔生产的x86系列(也就是IA-32架构)CPU及其兼容CPU,如AMD、VIA的。即 使是现在新起的X86-64(也被成AMD64)都是属于CISC的范畴。

要知道什么是指令集还要从当今的X86架构的CPU说起。X86指令集是Intel为其第一块16位CPU(i8086)专门开发 的,IBM1981年推出的世界第一台PC机中的CPU—i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加 了X87芯片,以后就将X86指令集和X87指令集统称为X86指令集。

  虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到过去的PII至强、PIII至强、 Pentium 3,最后到今天的Pentium 4系列、至强(不包括至强Nocona),但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,所以Intel公司所生产的所有 CPU仍然继续使用X86指令集,所以它的CPU仍属于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天庞大的X86系列及兼容CPU阵容。x86CPU目前主要有intel的服务器CPU和AMD的服务器 CPU两类。

(2)RISC指令集

  RISC是英文“Reduced Instruction Set Computing ” 的缩写,中文意思是“精简指令集”。它是在CISC指令系统基础上发展起来的,有人对CISC机进行测试表明,各种指令的使用频度相当悬殊,最常使用的是 一些比较简单的指令,它们仅占指令总数的20%,但在程序中出现的频度却占80%。复杂的指令系统必然增加微处理器的复杂性,使处理器的研制时间长,成本 高。并且复杂指令需要复杂的操作,必然会降低计算机的速度。基于上述原因,20世纪80年代RISC型CPU诞生了,相对于CISC型CPU ,RISC型CPU不仅精简了指令系统,还采用了一种叫做“超标量和超流水线结构”,大大增加了并行处理能力。RISC指令集是高性能CPU的发展方向。 它与传统的CISC(复杂指令集)相对。相比而言,RISC的指令格式统一,种类比较少,寻址方式也比复杂指令集少。当然处理速度就提高很多了。目前在中 高档服务器中普遍采用这一指令系统的CPU,特别是高档服务器全都采用RISC指令系统的CPU。RISC指令系统更加适合高档服务器的操作系统 UNIX,现在Linux也属于类似UNIX的操作系统。RISC型CPU与Intel和AMD的CPU在软件和硬件上都不兼容。

目前,在中高档服务器中采用RISC指令的CPU主要有以下几类:PowerPC处理器 、SPARC处理器、PA-RISC处理器、MIPS处理器、Alpha处理器。

(3)IA-64

EPIC(Explicitly Parallel Instruction Computers,精确并行指令计算机)是否是RISC和CISC体系的继承者的争论已经有很多,单以EPIC体系来说,它更像Intel的处理器迈向 RISC体系的重要步骤。从理论上说,EPIC体系设计的CPU,在相同的主机配置下,处理Windows的应用软件比基于Unix下的应用软件要好得 多。

Intel采用EPIC技术的服务器CPU是安腾Itanium(开发代号即Merced)。它是64位处理器,也是IA-64系列 中的第一款。微软也已开发了代号为Win64的操作系统,在软件上加以支持。在Intel采用了X86指令集之后,它又转而寻求更先进的64-bit微处 理器,Intel这样做的原因是,它们想摆脱容量巨大的x86架构,从而引入精力充沛而又功能强大的指令集,于是采用EPIC指令集的IA-64架构便诞 生了。IA-64 在很多方面来说,都比x86有了长足的进步。突破了传统IA32架构的许多限制,在数据的处理能力,系统的稳定性、安全性、可用性、可观理性等方面获得了 突破性的提高。

IA-64微处理器最大的缺陷是它们缺乏与x86的兼容,而Intel为了IA-64处理器能够更好地运行两个朝代的软件,它在IA -64处理器上(Itanium、Itanium2 ……)引入了x86-to-IA-64的解码器,这样就能够把x86指令翻译为IA-64指令。这个解码器并不是最有效率的解码器,也不是运行x86代码 的最好途径(最好的途径是 直接在x86处理器上运行x86代码),因此Itanium 和Itanium2在运行x86应用程序时候的性能非常糟糕。这也成为X86-64产生的根本原因。

(4)X86-64 (AMD64 / EM64T)

AMD公司设计,可以在同一时间内处理64位的整数运算,并兼容于X86-32架构。其中支持64位逻辑定址,同时提供转换为32位 定址选项;但数据操作指令默认为32位和8位,提供转换成64位和16位的选项;支持常规用途寄存器,如果是32位运算操作,就要将结果扩展成完整的64 位。这样,指令中有“直接执行”和“转换执行”的区别,其指令字段是8位或32位,可以避免字段过长。

x86-64(也叫AMD64)的产生也并非空穴来风,x86处理器的32bit寻址空间限制在4GB内存,而IA-64的处理器又 不能兼容x86。AMD充分考虑顾客的需求,加强x86指令集的功能,使这套指令集可同时支持64位的运算模式,因此AMD把它们的结构称之为x86- 64。在技术上AMD在x86-64架构中为了进行64位运算,AMD为其引入了新增了R8-R15通用寄存器作为原有X86处理器寄存器的扩充,但在而 在32位环境下并不完全使用到这些寄存器。原来的寄存器诸如EAX、EBX也由32位扩张至64位。在SSE单元中新加入了8个新寄存器以提供对SSE2 的支持。寄存器数量的增加将带来性能的提升。与此同时,为了同时支持32和64位代码及寄存器,x86-64架构允许处理器工作在以下两种模式:Long Mode(长模式)和Legacy Mode(遗传模式),Long模式又分为两种子模式(64bit模式和Compatibility mode兼容模式)。该标准已经被引进在AMD服务器处理器中的Opteron处理器。

而今年也推出了支持64位的EM64T技术,再还没被正式命为EM64T之前是IA32E,这是英特尔64位扩展技术的名字,用来区 别X86指令集。Intel的EM64T支持64位sub-mode,和AMD的X86-64技术类似,采用64位的线性平面寻址,加入8个新的通用寄存 器(GPRs),还增加8个寄存器支持SSE指令。与AMD相类似,Intel的64位技术将兼容IA32和IA32E,只有在运行64位操作系统下的时 候,才将会采用IA32E。IA32E将由2个sub-mode组成:64位sub-mode和32位sub-mode,同AMD64一样是向下兼容的。 Intel的EM64T将完全兼容AMD的X86-64技术。现在Nocona处理器已经加入了一些64位技术,Intel的Pentium 4E处理器也支持64位技术。

应该说,这两者都是兼容x86指令集的64位微处理器架构,但EM64T与AMD64还是有一些不一样的地方,AMD64处理器中的NX位在Intel的处理器中将没有提供。

11.超流水线与超标量

  在解释超流水线与超标量前,先了解流水线(pipeline)。流水线是Intel首次在486芯片中开始使用的。流水线的工作 方式就象工业生产上的装配流水线。在CPU中由5—6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5—6步后再由这些电路单元 分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。经典奔腾每条整数流水线都分为四级流水,即指令预取、译码、执行、 写回结果,浮点流水又分为八级流水。

超标量是通过内置多条流水线来同时执行多个处理器,其实质是以空间换取时间。而超流水线是通过细化流水、提高主频,使得在一个机器周 期内完成一个甚至多个操作,其实质是以时间换取空间。例如Pentium 4的流水线就长达20级。将流水线设计的步(级)越长,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。但是流水线过长也带来了一定副作 用,很可能会出现主频较高的CPU实际运算速度较低的现象,Intel的奔腾4就出现了这种情况,虽然它的主频可以高达1.4G以上,但其运算性能却远远 比不上AMD 1.2G的速龙甚至奔腾III。

12.封装形式

  CPU封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。 CPU的封装方式取决于CPU安装形式和器件集成设计,从大的分类来看通常采用Socket插座进行安装的CPU使用PGA(栅格阵列)方式封装,而采用 Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。现在还有PLGA(Plastic Land Grid Array)、OLGA(Organic Land Grid Array)等封装技术。由于市场竞争日益激烈,目前CPU封装技术的发展方向以节约成本为主。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/violetfeeling/article/details/3728022

智能推荐

c# 调用c++ lib静态库_c#调用lib-程序员宅基地

文章浏览阅读2w次,点赞7次,收藏51次。四个步骤1.创建C++ Win32项目动态库dll 2.在Win32项目动态库中添加 外部依赖项 lib头文件和lib库3.导出C接口4.c#调用c++动态库开始你的表演...①创建一个空白的解决方案,在解决方案中添加 Visual C++ , Win32 项目空白解决方案的创建:添加Visual C++ , Win32 项目这......_c#调用lib

deepin/ubuntu安装苹方字体-程序员宅基地

文章浏览阅读4.6k次。苹方字体是苹果系统上的黑体,挺好看的。注重颜值的网站都会使用,例如知乎:font-family: -apple-system, BlinkMacSystemFont, Helvetica Neue, PingFang SC, Microsoft YaHei, Source Han Sans SC, Noto Sans CJK SC, W..._ubuntu pingfang

html表单常见操作汇总_html表单的处理程序有那些-程序员宅基地

文章浏览阅读159次。表单表单概述表单标签表单域按钮控件demo表单标签表单标签基本语法结构<form action="处理数据程序的url地址“ method=”get|post“ name="表单名称”></form><!--action,当提交表单时,向何处发送表单中的数据,地址可以是相对地址也可以是绝对地址--><!--method将表单中的数据传送给服务器处理,get方式直接显示在url地址中,数据可以被缓存,且长度有限制;而post方式数据隐藏传输,_html表单的处理程序有那些

PHP设置谷歌验证器(Google Authenticator)实现操作二步验证_php otp 验证器-程序员宅基地

文章浏览阅读1.2k次。使用说明:开启Google的登陆二步验证(即Google Authenticator服务)后用户登陆时需要输入额外由手机客户端生成的一次性密码。实现Google Authenticator功能需要服务器端和客户端的支持。服务器端负责密钥的生成、验证一次性密码是否正确。客户端记录密钥后生成一次性密码。下载谷歌验证类库文件放到项目合适位置(我这边放在项目Vender下面)https://github.com/PHPGangsta/GoogleAuthenticatorPHP代码示例://引入谷_php otp 验证器

【Python】matplotlib.plot画图横坐标混乱及间隔处理_matplotlib更改横轴间距-程序员宅基地

文章浏览阅读4.3k次,点赞5次,收藏11次。matplotlib.plot画图横坐标混乱及间隔处理_matplotlib更改横轴间距

docker — 容器存储_docker 保存容器-程序员宅基地

文章浏览阅读2.2k次。①Storage driver 处理各镜像层及容器层的处理细节,实现了多层数据的堆叠,为用户 提供了多层数据合并后的统一视图②所有 Storage driver 都使用可堆叠图像层和写时复制(CoW)策略③docker info 命令可查看当系统上的 storage driver主要用于测试目的,不建议用于生成环境。_docker 保存容器

随便推点

网络拓扑结构_网络拓扑csdn-程序员宅基地

文章浏览阅读834次,点赞27次,收藏13次。网络拓扑结构是指计算机网络中各组件(如计算机、服务器、打印机、路由器、交换机等设备)及其连接线路在物理布局或逻辑构型上的排列形式。这种布局不仅描述了设备间的实际物理连接方式,也决定了数据在网络中流动的路径和方式。不同的网络拓扑结构影响着网络的性能、可靠性、可扩展性及管理维护的难易程度。_网络拓扑csdn

JS重写Date函数,兼容IOS系统_date.prototype 将所有 ios-程序员宅基地

文章浏览阅读1.8k次,点赞5次,收藏8次。IOS系统Date的坑要创建一个指定时间的new Date对象时,通常的做法是:new Date("2020-09-21 11:11:00")这行代码在 PC 端和安卓端都是正常的,而在 iOS 端则会提示 Invalid Date 无效日期。在IOS年月日中间的横岗许换成斜杠,也就是new Date("2020/09/21 11:11:00")通常为了兼容IOS的这个坑,需要做一些额外的特殊处理,笔者在开发的时候经常会忘了兼容IOS系统。所以就想试着重写Date函数,一劳永逸,避免每次ne_date.prototype 将所有 ios

如何将EXCEL表导入plsql数据库中-程序员宅基地

文章浏览阅读5.3k次。方法一:用PLSQL Developer工具。 1 在PLSQL Developer的sql window里输入select * from test for update; 2 按F8执行 3 打开锁, 再按一下加号. 鼠标点到第一列的列头,使全列成选中状态,然后粘贴,最后commit提交即可。(前提..._excel导入pl/sql

Git常用命令速查手册-程序员宅基地

文章浏览阅读83次。Git常用命令速查手册1、初始化仓库git init2、将文件添加到仓库git add 文件名 # 将工作区的某个文件添加到暂存区 git add -u # 添加所有被tracked文件中被修改或删除的文件信息到暂存区,不处理untracked的文件git add -A # 添加所有被tracked文件中被修改或删除的文件信息到暂存区,包括untracked的文件...

分享119个ASP.NET源码总有一个是你想要的_千博二手车源码v2023 build 1120-程序员宅基地

文章浏览阅读202次。分享119个ASP.NET源码总有一个是你想要的_千博二手车源码v2023 build 1120

【C++缺省函数】 空类默认产生的6个类成员函数_空类默认产生哪些类成员函数-程序员宅基地

文章浏览阅读1.8k次。版权声明:转载请注明出处 http://blog.csdn.net/irean_lau。目录(?)[+]1、缺省构造函数。2、缺省拷贝构造函数。3、 缺省析构函数。4、缺省赋值运算符。5、缺省取址运算符。6、 缺省取址运算符 const。[cpp] view plain copy_空类默认产生哪些类成员函数

推荐文章

热门文章

相关标签