Pandas 10分钟入门(官方说明+个人小测试)_pandas in 10minutes-程序员宅基地

技术标签: pandas  python  

Pandas 10分钟入门


代码下载地址[http://download.csdn.net/download/sirwill/10043185]

In [19]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Object Creation

In [20]:
s= pd.Series([1,2,3,np.nan,5,6,])   #series 类型数组。
s
Out[20]:
0    1.0
1    2.0
2    3.0
3    NaN
4    5.0
5    6.0
dtype: float64
In [21]:
dates= pd.date_range("20170112",periods=6) #Creating a DataFrame by passing a numpy array, with a datetime index and labeled column
dates
Out[21]:
DatetimeIndex(['2017-01-12', '2017-01-13', '2017-01-14', '2017-01-15',
               '2017-01-16', '2017-01-17'],
              dtype='datetime64[ns]', freq='D')
In [22]:
list(dates)
dates.date
Out[22]:
array([datetime.date(2017, 1, 12), datetime.date(2017, 1, 13),
       datetime.date(2017, 1, 14), datetime.date(2017, 1, 15),
       datetime.date(2017, 1, 16), datetime.date(2017, 1, 17)], dtype=object)
In [23]:
list(dates.date)
Out[23]:
[datetime.date(2017, 1, 12),
 datetime.date(2017, 1, 13),
 datetime.date(2017, 1, 14),
 datetime.date(2017, 1, 15),
 datetime.date(2017, 1, 16),
 datetime.date(2017, 1, 17)]
In [24]:
dates.year
Out[24]:
Int64Index([2017, 2017, 2017, 2017, 2017, 2017], dtype='int64')
In [25]:
list(dates.year)
Out[25]:
[2017, 2017, 2017, 2017, 2017, 2017]
In [26]:
list(dates.day)
Out[26]:
[12, 13, 14, 15, 16, 17]
In [27]:
str(dates.date)
Out[27]:
'[datetime.date(2017, 1, 12) datetime.date(2017, 1, 13)\n datetime.date(2017, 1, 14) datetime.date(2017, 1, 15)\n datetime.date(2017, 1, 16) datetime.date(2017, 1, 17)]'
In [28]:
df=pd.DataFrame(np.random.randn(6,4),index=dates,columns=list("ABCD"))
df
Out[28]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [29]:
df2 = pd.DataFrame({
         'A' : 1.,
                    'B' : pd.Timestamp('20130102'),
                    'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
                    'D' : np.array([3] * 4,dtype='int32'),
                    'E' : pd.Categorical(["test","train","test","train"]),
                    'F' : 'foo' }) #Creating a DataFrame by passing a dict of objects that can be converted to series-like.
df2
Out[29]:
  A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
In [30]:
df2.dtypes
Out[30]:
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object
In [31]:
df.dtypes
Out[31]:
A    float64
B    float64
C    float64
D    float64
dtype: object
In [32]:
df2.<TAB> #使用jupyter时按tab键,可以看到代码提示。
  File "<ipython-input-32-9c4c8dafe199>", line 1
    df2.<TAB> #If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled.
        ^
SyntaxError: invalid syntax

Viewing Data

In [36]:
df.head()
Out[36]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
In [37]:
df.index
Out[37]:
DatetimeIndex(['2017-01-12', '2017-01-13', '2017-01-14', '2017-01-15',
               '2017-01-16', '2017-01-17'],
              dtype='datetime64[ns]', freq='D')
In [38]:
df.columns
Out[38]:
Index(['A', 'B', 'C', 'D'], dtype='object')
In [39]:
df.values
Out[39]:
array([[-2.2581213 ,  2.45619592,  0.77856734, -2.030407  ],
       [-0.65834822,  0.62249451,  0.38862467,  0.07358728],
       [ 0.58921899,  1.39279193,  0.60554535,  1.23153815],
       [-0.1519579 , -0.65524863, -2.1147252 , -0.66983949],
       [-1.32330447,  3.14365936,  0.63899562,  0.89868346],
       [-0.02493461,  0.3858107 , -1.57718486, -0.0214603 ]])
In [40]:
df.describe()
Out[40]:
  A B C D
count 6.000000 6.000000 6.000000 6.000000
mean -0.637908 1.224284 -0.213363 -0.086316
std 1.021078 1.401987 1.282079 1.171045
min -2.258121 -0.655249 -2.114725 -2.030407
25% -1.157065 0.444982 -1.085732 -0.507745
50% -0.405153 1.007643 0.497085 0.026063
75% -0.056690 2.190345 0.630633 0.692409
max 0.589219 3.143659 0.778567 1.231538
In [41]:
df
Out[41]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [42]:
df.T
Out[42]:
  2017-01-12 00:00:00 2017-01-13 00:00:00 2017-01-14 00:00:00 2017-01-15 00:00:00 2017-01-16 00:00:00 2017-01-17 00:00:00
A -2.258121 -0.658348 0.589219 -0.151958 -1.323304 -0.024935
B 2.456196 0.622495 1.392792 -0.655249 3.143659 0.385811
C 0.778567 0.388625 0.605545 -2.114725 0.638996 -1.577185
D -2.030407 0.073587 1.231538 -0.669839 0.898683 -0.021460
In [43]:
df.sort_index(axis=1,ascending=False) #Sorting by an axis  排序。
Out[43]:
  D C B A
2017-01-12 -2.030407 0.778567 2.456196 -2.258121
2017-01-13 0.073587 0.388625 0.622495 -0.658348
2017-01-14 1.231538 0.605545 1.392792 0.589219
2017-01-15 -0.669839 -2.114725 -0.655249 -0.151958
2017-01-16 0.898683 0.638996 3.143659 -1.323304
2017-01-17 -0.021460 -1.577185 0.385811 -0.024935
In [44]:
df.sort_values(by="B") #Sorting by values
Out[44]:
  A B C D
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-16 -1.323304 3.143659 0.638996 0.898683
In [45]:
df
Out[45]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460

Selection

Getting

In [46]:
df["A"]# Selecting a single column, which yields a Series, equivalent to df.A
Out[46]:
2017-01-12   -2.258121
2017-01-13   -0.658348
2017-01-14    0.589219
2017-01-15   -0.151958
2017-01-16   -1.323304
2017-01-17   -0.024935
Freq: D, Name: A, dtype: float64
In [47]:
df.A
Out[47]:
2017-01-12   -2.258121
2017-01-13   -0.658348
2017-01-14    0.589219
2017-01-15   -0.151958
2017-01-16   -1.323304
2017-01-17   -0.024935
Freq: D, Name: A, dtype: float64
In [48]:
df[0:3]  #Selecting via [], which slices the rows.
Out[48]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
In [49]:
df["2017-01-13":"2017-01-17"]
Out[49]:
  A B C D
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460

Selection by Label

In [50]:
dates
Out[50]:
DatetimeIndex(['2017-01-12', '2017-01-13', '2017-01-14', '2017-01-15',
               '2017-01-16', '2017-01-17'],
              dtype='datetime64[ns]', freq='D')
In [51]:
df.loc[dates[0]] #For getting a cross section using a label
Out[51]:
A   -2.258121
B    2.456196
C    0.778567
D   -2.030407
Name: 2017-01-12 00:00:00, dtype: float64
In [52]:
df.loc[:,["A","B"]]
Out[52]:
  A B
2017-01-12 -2.258121 2.456196
2017-01-13 -0.658348 0.622495
2017-01-14 0.589219 1.392792
2017-01-15 -0.151958 -0.655249
2017-01-16 -1.323304 3.143659
2017-01-17 -0.024935 0.385811
In [53]:
df.loc['20170112':'20170116',['A','B']] #Showing label slicing, both endpoints are included
Out[53]:
  A B
2017-01-12 -2.258121 2.456196
2017-01-13 -0.658348 0.622495
2017-01-14 0.589219 1.392792
2017-01-15 -0.151958 -0.655249
2017-01-16 -1.323304 3.143659
In [54]:
df.loc["20170115",["A","B"]] 
Out[54]:
A   -0.151958
B   -0.655249
Name: 2017-01-15 00:00:00, dtype: float64
In [55]:
df.loc[dates[3],"D"] #For getting a scalar value
Out[55]:
-0.6698394854437093
In [56]:
df.at[dates[3],"D"] #For getting fast access to a scalar (equiv to the prior method)
Out[56]:
-0.6698394854437093

Selection by Position

In [57]:
df.iloc[3] #Select via the position of the passed integers
Out[57]:
A   -0.151958
B   -0.655249
C   -2.114725
D   -0.669839
Name: 2017-01-15 00:00:00, dtype: float64
In [58]:
df.iloc[2:5,0:2] # By integer slices, acting similar to numpy/python
Out[58]:
  A B
2017-01-14 0.589219 1.392792
2017-01-15 -0.151958 -0.655249
2017-01-16 -1.323304 3.143659
In [59]:
df.iloc[[1,3,4],[0,2]] #By lists of integer position locations, similar to the numpy/python style
Out[59]:
  A C
2017-01-13 -0.658348 0.388625
2017-01-15 -0.151958 -2.114725
2017-01-16 -1.323304 0.638996
In [60]:
df.iloc[1:3,:]
Out[60]:
  A B C D
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
In [61]:
df.iloc[:,1:3]
Out[61]:
  B C
2017-01-12 2.456196 0.778567
2017-01-13 0.622495 0.388625
2017-01-14 1.392792 0.605545
2017-01-15 -0.655249 -2.114725
2017-01-16 3.143659 0.638996
2017-01-17 0.385811 -1.577185
In [62]:
df.iloc[1,1] #For getting a value explicitly
Out[62]:
0.62249451281708756
In [63]:
df.iat[1,1] #For getting fast access to a scalar (equiv to the prior method)
Out[63]:
0.62249451281708756

Boolean Indexing

In [64]:
df[df.A>0] #Using a single column’s values to select data
Out[64]:
  A B C D
2017-01-14 0.589219 1.392792 0.605545 1.231538
In [65]:
df[df>0] #Selecting values from a DataFrame where a boolean condition is met
Out[65]:
  A B C D
2017-01-12 NaN 2.456196 0.778567 NaN
2017-01-13 NaN 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 NaN NaN NaN NaN
2017-01-16 NaN 3.143659 0.638996 0.898683
2017-01-17 NaN 0.385811 NaN NaN
In [66]:
df2
Out[66]:
  A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
In [67]:
df
Out[67]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [68]:
df2=df.copy()
df2
Out[68]:
  A B C D
2017-01-12 -2.258121 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [69]:
df.equals(df2)
Out[69]:
True
In [70]:
df==df2
Out[70]:
  A B C D
2017-01-12 True True True True
2017-01-13 True True True True
2017-01-14 True True True True
2017-01-15 True True True True
2017-01-16 True True True True
2017-01-17 True True True True
In [71]:
df is df2
Out[71]:
False
In [72]:
df2["E"]=["one","one","two","three","four","three"]
df2
Out[72]:
  A B C D E
2017-01-12 -2.258121 2.456196 0.778567 -2.030407 one
2017-01-13 -0.658348 0.622495 0.388625 0.073587 one
2017-01-14 0.589219 1.392792 0.605545 1.231538 two
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839 three
2017-01-16 -1.323304 3.143659 0.638996 0.898683 four
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460 three
In [73]:
df2[df2.E.isin(["two","four"])]
Out[73]:
  A B C D E
2017-01-14 0.589219 1.392792 0.605545 1.231538 two
2017-01-16 -1.323304 3.143659 0.638996 0.898683 four
In [74]:
df2[df2["E"].isin(["two","four"])]
Out[74]:
  A B C D E
2017-01-14 0.589219 1.392792 0.605545 1.231538 two
2017-01-16 -1.323304 3.143659 0.638996 0.898683 four

Setting

In [75]:
s1= pd.Series([1,2,3,4,5,6],index=pd.date_range("20171016",periods=6)) #Setting a new column automatically aligns the data by the indexes
s1
Out[75]:
2017-10-16    1
2017-10-17    2
2017-10-18    3
2017-10-19    4
2017-10-20    5
2017-10-21    6
Freq: D, dtype: int64
In [76]:
df.at[dates[0],"A"]=0 #Setting values by label
In [77]:
df
Out[77]:
  A B C D
2017-01-12 0.000000 2.456196 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [78]:
df.iat[0,1]=0
df
Out[78]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 -2.030407
2017-01-13 -0.658348 0.622495 0.388625 0.073587
2017-01-14 0.589219 1.392792 0.605545 1.231538
2017-01-15 -0.151958 -0.655249 -2.114725 -0.669839
2017-01-16 -1.323304 3.143659 0.638996 0.898683
2017-01-17 -0.024935 0.385811 -1.577185 -0.021460
In [79]:
df.loc[:,"D"]=np.array([5]*len(df)) #Setting by assigning with a numpy array
df
Out[79]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [80]:
df2=df.copy()
df2
Out[80]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [81]:
df2[df2>0]=-df2
df2
Out[81]:
  A B C D
2017-01-12 0.000000 0.000000 -0.778567 -5
2017-01-13 -0.658348 -0.622495 -0.388625 -5
2017-01-14 -0.589219 -1.392792 -0.605545 -5
2017-01-15 -0.151958 -0.655249 -2.114725 -5
2017-01-16 -1.323304 -3.143659 -0.638996 -5
2017-01-17 -0.024935 -0.385811 -1.577185 -5

Missing Data

In [83]:
df
Out[83]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [84]:
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.loc[dates[0]:dates[1],'E'] = 1
df1
Out[84]:
  A B C D E
2017-01-12 0.000000 0.000000 0.778567 5 1.0
2017-01-13 -0.658348 0.622495 0.388625 5 1.0
2017-01-14 0.589219 1.392792 0.605545 5 NaN
2017-01-15 -0.151958 -0.655249 -2.114725 5 NaN
In [85]:
df1.dropna(how="any") #To drop any rows that have missing data
Out[85]:
  A B C D E
2017-01-12 0.000000 0.000000 0.778567 5 1.0
2017-01-13 -0.658348 0.622495 0.388625 5 1.0
In [86]:
df1.fillna(value=5)  # Filling missing data
Out[86]:
  A B C D E
2017-01-12 0.000000 0.000000 0.778567 5 1.0
2017-01-13 -0.658348 0.622495 0.388625 5 1.0
2017-01-14 0.589219 1.392792 0.605545 5 5.0
2017-01-15 -0.151958 -0.655249 -2.114725 5 5.0
In [87]:
df1
Out[87]:
  A B C D E
2017-01-12 0.000000 0.000000 0.778567 5 1.0
2017-01-13 -0.658348 0.622495 0.388625 5 1.0
2017-01-14 0.589219 1.392792 0.605545 5 NaN
2017-01-15 -0.151958 -0.655249 -2.114725 5 NaN
In [88]:
pd.isnull(df1)
Out[88]:
  A B C D E
2017-01-12 False False False False False
2017-01-13 False False False False False
2017-01-14 False False False False True
2017-01-15 False False False False True
In [89]:
df1.isnull()
Out[89]:
  A B C D E
2017-01-12 False False False False False
2017-01-13 False False False False False
2017-01-14 False False False False True
2017-01-15 False False False False True
In [90]:
df1.isna()  #没有这个方法~~
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-90-9dd6d031e095> in <module>()
----> 1 df1.isna()  #没有这个方法~~

D:\Users\asus\Anaconda3\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)
   2968             if name in self._info_axis:
   2969                 return self[name]
-> 2970             return object.__getattribute__(self, name)
   2971 
   2972     def __setattr__(self, name, value):

AttributeError: 'DataFrame' object has no attribute 'isna'

Options

Stats

Operations in general exclude missing data. Performing a descriptive statistic

In [91]:
df
Out[91]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [92]:
df.mean()
Out[92]:
A   -0.261554
B    0.814918
C   -0.213363
D    5.000000
dtype: float64
In [93]:
df.mean(1)  #Same operation on the other axis
Out[93]:
2017-01-12    1.444642
2017-01-13    1.338193
2017-01-14    1.896889
2017-01-15    0.519517
2017-01-16    1.864838
2017-01-17    0.945923
Freq: D, dtype: float64
In [94]:
s= pd.Series([1,2,3,np.nan,4,5],index=dates).shift(2) 
# Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension.
s
Out[94]:
2017-01-12    NaN
2017-01-13    NaN
2017-01-14    1.0
2017-01-15    2.0
2017-01-16    3.0
2017-01-17    NaN
Freq: D, dtype: float64
In [95]:
df
Out[95]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [96]:
df.sub(s,axis="index")  #dataFrame与series的减法
Out[96]:
  A B C D
2017-01-12 NaN NaN NaN NaN
2017-01-13 NaN NaN NaN NaN
2017-01-14 -0.410781 0.392792 -0.394455 4.0
2017-01-15 -2.151958 -2.655249 -4.114725 3.0
2017-01-16 -4.323304 0.143659 -2.361004 2.0
2017-01-17 NaN NaN NaN NaN

Apply

In [97]:
df
Out[97]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [98]:
df.apply(np.cumsum)  #行叠加。
Out[98]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 1.167192 10
2017-01-14 -0.069129 2.015286 1.772737 15
2017-01-15 -0.221087 1.360038 -0.341988 20
2017-01-16 -1.544392 4.503697 0.297008 25
2017-01-17 -1.569326 4.889508 -1.280177 30
In [99]:
df.apply(lambda x: x.max()-x.min())
Out[99]:
A    1.912523
B    3.798908
C    2.893293
D    0.000000
dtype: float64

Histogramming

In [100]:
s= pd.Series(np.random.randint(0,7,size=10))
s
Out[100]:
0    4
1    5
2    2
3    0
4    5
5    3
6    4
7    3
8    3
9    0
dtype: int32
In [101]:
s.value_counts()
Out[101]:
3    3
5    2
4    2
0    2
2    1
dtype: int64

String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [102]:
s= pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()
Out[102]:
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object
In [103]:
s
Out[103]:
0       A
1       B
2       C
3    Aaba
4    Baca
5     NaN
6    CABA
7     dog
8     cat
dtype: object

Merge 合并

Concat

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations. See the Merging section Concatenating pandas objects together with concat():

In [104]:
df
Out[104]:
  A B C D
2017-01-12 0.000000 0.000000 0.778567 5
2017-01-13 -0.658348 0.622495 0.388625 5
2017-01-14 0.589219 1.392792 0.605545 5
2017-01-15 -0.151958 -0.655249 -2.114725 5
2017-01-16 -1.323304 3.143659 0.638996 5
2017-01-17 -0.024935 0.385811 -1.577185 5
In [105]:
df=pd.DataFrame(np.random.randn(10,4))
df
Out[105]:
  0 1 2 3
0 0.111766 -0.505125 2.156029 0.419152
1 1.068870 1.180587 0.361345 1.090554
2 0.488997 0.281507 -0.738345 -0.242974
3 -1.846709 1.686173 -0.202319 -1.151983
4 0.573012 -1.979189 1.544768 1.594595
5 -0.954571 -0.696788 0.270959 -2.296720
6 -1.511946 1.796113 0.399493 0.412664
7 0.089844 -0.545153 -0.315653 -0.235828
8 -0.747140 1.222900 -1.650812 0.292432
9 0.659855 0.501265 0.363978 1.722914
In [106]:
# break it into pieces
pieces=[df[:3],df[3:7],df[7:]]
pd.concat(pieces)
Out[106]:
  0 1 2 3
0 0.111766 -0.505125 2.156029 0.419152
1 1.068870 1.180587 0.361345 1.090554
2 0.488997 0.281507 -0.738345 -0.242974
3 -1.846709 1.686173 -0.202319 -1.151983
4 0.573012 -1.979189 1.544768 1.594595
5 -0.954571 -0.696788 0.270959 -2.296720
6 -1.511946 1.796113 0.399493 0.412664
7 0.089844 -0.545153 -0.315653 -0.235828
8 -0.747140 1.222900 -1.650812 0.292432
9 0.659855 0.501265 0.363978 1.722914
In [107]:
pieces
Out[107]:
[          0         1         2         3
 0  0.111766 -0.505125  2.156029  0.419152
 1  1.068870  1.180587  0.361345  1.090554
 2  0.488997  0.281507 -0.738345 -0.242974,
           0         1         2         3
 3 -1.846709  1.686173 -0.202319 -1.151983
 4  0.573012 -1.979189  1.544768  1.594595
 5 -0.954571 -0.696788  0.270959 -2.296720
 6 -1.511946  1.796113  0.399493  0.412664,
           0         1         2         3
 7  0.089844 -0.545153 -0.315653 -0.235828
 8 -0.747140  1.222900 -1.650812  0.292432
 9  0.659855  0.501265  0.363978  1.722914]

Join

SQL style merges. See the Database style joining

In [108]:
left=pd.DataFrame({
        "key":["foo","foo"],"lval":[1,2]})
right = pd.DataFrame({
        'key': ['foo', 'foo'], 'rval': [4, 5]})
In [109]:
left
Out[109]:
  key lval
0 foo 1
1 foo 2
In [110]:
right
Out[110]:
  key rval
0 foo 4
1 foo 5
In [111]:
pd.merge(left,right,on="key")
Out[111]:
  key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
In [112]:
left = pd.DataFrame({
        'key': ['foo', 'bar'], 'lval': [1, 2]})
right = pd.DataFrame({
        'key': ['foo', 'bar'], 'rval': [4, 5]})
In [113]:
left
Out[113]:
  key lval
0 foo 1
1 bar 2
In [114]:
right
Out[114]:
  key rval
0 foo 4
1 bar 5
In [115]:
pd.merge(left,right,on="key")
Out[115]:
  key lval rval
0 foo 1 4
1 bar 2 5

Append

In [116]:
df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
df
Out[116]:
  A B C D
0 -0.852451 1.074357 -0.591892 0.950982
1 -0.977580 1.656374 0.693657 0.718832
2 0.303269 -0.881728 -1.509321 1.219849
3 0.655751 1.235660 1.729038 1.074948
4 0.658413 -1.215348 -1.139623 0.753772
5 1.345115 1.420212 -0.124543 -0.099265
6 1.129623 0.597484 -0.804759 -0.568266
7 -0.770570 0.540917 -0.261607 -0.083751
In [117]:
s=df.iloc[3]
s
Out[117]:
A    0.655751
B    1.235660
C    1.729038
D    1.074948
Name: 3, dtype: float64
In [118]:
df.append(s,ignore_index=True)
Out[118]:
  A B C D
0 -0.852451 1.074357 -0.591892 0.950982
1 -0.977580 1.656374 0.693657 0.718832
2 0.303269 -0.881728 -1.509321 1.219849
3 0.655751 1.235660 1.729038 1.074948
4 0.658413 -1.215348 -1.139623 0.753772
5 1.345115 1.420212 -0.124543 -0.099265
6 1.129623 0.597484 -0.804759 -0.568266
7 -0.770570 0.540917 -0.261607 -0.083751
8 0.655751 1.235660 1.729038 1.074948

Grouping

By “group by” we are referring to a process involving one or more of the following steps • Splitting the data into groups based on some criteria • Applying a function to each group independently • Combining the results into a data structure

In [119]:
df = pd.DataFrame({
        'A' : ['foo', 'bar', 'foo', 'bar',
                          'foo', 'bar', 'foo', 'foo'],
                   'B' : ['one', 'one', 'two', 'three',
                          'two', 'two', 'one', 'three'],
                   'C' : np.random.randn(8),
                   'D' : np.random.randn(8)})
df
Out[119]:
  A B C D
0 foo one -0.523738 -1.363519
1 bar one -0.071920 -2.618027
2 foo two -2.712421 -0.407372
3 bar three -0.635898 -1.942854
4 foo two 0.952073 -0.546110
5 bar two 1.474296 -0.982238
6 foo one -0.529788 -0.213397
7 foo three 0.877394 -0.791663
In [120]:
df.groupby("A").sum()
Out[120]:
  C D
A    
bar 0.766479 -5.543120
foo -1.936480 -3.322062
In [121]:
df.groupby(["A","B"]).sum()  #Grouping by multiple columns forms a hierarchical index, which we then apply the function.
Out[121]:
    C D
A B    
bar one -0.071920 -2.618027
three -0.635898 -1.942854
two 1.474296 -0.982238
foo one -1.053527 -1.576917
three 0.877394 -0.791663
two -1.760347 -0.953482

Reshaping

Stack

In [122]:
tuples = list(zip([['bar', 'bar', 'baz', 'baz',
                     'foo', 'foo', 'qux', 'qux'],
                    ['one', 'two', 'one', 'two',
                     'one', 'two', 'one', 'two']]))
tuples
Out[122]:
[(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],),
 (['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'],)]
In [123]:
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                     'foo', 'foo', 'qux', 'qux'],
                    ['one', 'two', 'one', 'two',
                     'one', 'two', 'one', 'two']]))
tuples
Out[123]:
[('bar', 'one'),
 ('bar', 'two'),
 ('baz', 'one'),
 ('baz', 'two'),
 ('foo', 'one'),
 ('foo', 'two'),
 ('qux', 'one'),
 ('qux', 'two')]
In [124]:
index=pd.MultiIndex.from_tuples(tuples,names=["first","second"])
index
Out[124]:
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
           labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
           names=['first', 'second'])
In [125]:
df=pd.DataFrame(np.random.randn(8,2),index=index,columns=['A', 'B'])
df
Out[125]:
    A B
first second    
bar one -1.101051 -1.126231
two -0.395652 -0.313567
baz one 1.378579 -1.637869
two 0.665960 -0.259749
foo one -0.256181 1.260131
two -0.994720 0.506272
qux one -0.422649 0.191402
two -0.102085 0.975210
In [126]:
df2=df[:4]
df2
Out[126]:
    A B
first second    
bar one -1.101051 -1.126231
two -0.395652 -0.313567
baz one 1.378579 -1.637869
two 0.665960 -0.259749
In [127]:
stacked= df2.stack()
stacked
Out[127]:
first  second   
bar    one     A   -1.101051
               B   -1.126231
       two     A   -0.395652
               B   -0.313567
baz    one     A    1.378579
               B   -1.637869
       two     A    0.665960
               B   -0.259749
dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack() is unstack(), which by default unstacks the last level:

In [128]:
stacked.unstack()
Out[128]:
    A B
first second    
bar one -1.101051 -1.126231
two -0.395652 -0.313567
baz one 1.378579 -1.637869
two 0.665960 -0.259749
In [129]:
stacked.unstack(1)
Out[129]:
  second one two
first      
bar A -1.101051 -0.395652
B -1.126231 -0.313567
baz A 1.378579 0.665960
B -1.637869 -0.259749
In [130]:
stacked.unstack(0)
Out[130]:
  first bar baz
second      
one A -1.101051 1.378579
B -1.126231 -1.637869
two A -0.395652 0.665960
B -0.313567 -0.259749

Pivot Tables

In [131]:
df = pd.DataFrame({
        'A' : ['one', 'one', 'two', 'three'] * 3,
                   'B' : ['A', 'B', 'C'] * 4,
                   'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
                   'D' : np.random.randn(12),
                   'E' : np.random.randn(12)})
df
Out[131]:
  A B C D E
0 one A foo 0.039230 0.134261
1 one B foo 0.952890 -0.499183
2 two C foo -0.778814 -0.655735
3 three A bar 0.798864 0.025109
4 one B bar -0.580050 -1.711672
5 one C bar 0.004300 -0.433591
6 two A foo 0.229248 -2.648814
7 three B foo 0.506488 0.630373
8 one C foo -0.315667 0.031764
9 one A bar -1.547410 0.743825
10 two B bar -0.480958 0.365255
11 three C bar 1.742948 0.692884
In [4]:
pd.pivot_table(df,values="D",index=["A","B"],columns=["C"])
Out[4]:
  C bar foo
A B    
one A 0.932814 -1.440079
B 0.060252 1.071877
C 2.879779 0.355274
three A -0.328442 NaN
B NaN -2.544812
C -1.879058 NaN
two A NaN -1.987377
B 0.220517 NaN
C NaN -0.082820

Time Series

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications.

In [132]:
rng=pd.date_range("1/2/2017",periods=100,freq="S")
rng
Out[132]:
DatetimeIndex(['2017-01-02 00:00:00', '2017-01-02 00:00:01',
               '2017-01-02 00:00:02', '2017-01-02 00:00:03',
               '2017-01-02 00:00:04', '2017-01-02 00:00:05',
               '2017-01-02 00:00:06', '2017-01-02 00:00:07',
               '2017-01-02 00:00:08', '2017-01-02 00:00:09',
               '2017-01-02 00:00:10', '2017-01-02 00:00:11',
               '2017-01-02 00:00:12', '2017-01-02 00:00:13',
               '2017-01-02 00:00:14', '2017-01-02 00:00:15',
               '2017-01-02 00:00:16', '2017-01-02 00:00:17',
               '2017-01-02 00:00:18', '2017-01-02 00:00:19',
               '2017-01-02 00:00:20', '2017-01-02 00:00:21',
               '2017-01-02 00:00:22', '2017-01-02 00:00:23',
               '2017-01-02 00:00:24', '2017-01-02 00:00:25',
               '2017-01-02 00:00:26', '2017-01-02 00:00:27',
               '2017-01-02 00:00:28', '2017-01-02 00:00:29',
               '2017-01-02 00:00:30', '2017-01-02 00:00:31',
               '2017-01-02 00:00:32', '2017-01-02 00:00:33',
               '2017-01-02 00:00:34', '2017-01-02 00:00:35',
               '2017-01-02 00:00:36', '2017-01-02 00:00:37',
               '2017-01-02 00:00:38', '2017-01-02 00:00:39',
               '2017-01-02 00:00:40', '2017-01-02 00:00:41',
               '2017-01-02 00:00:42', '2017-01-02 00:00:43',
               '2017-01-02 00:00:44', '2017-01-02 00:00:45',
               '2017-01-02 00:00:46', '2017-01-02 00:00:47',
               '2017-01-02 00:00:48', '2017-01-02 00:00:49',
               '2017-01-02 00:00:50', '2017-01-02 00:00:51',
               '2017-01-02 00:00:52', '2017-01-02 00:00:53',
               '2017-01-02 00:00:54', '2017-01-02 00:00:55',
               '2017-01-02 00:00:56', '2017-01-02 00:00:57',
               '2017-01-02 00:00:58', '2017-01-02 00:00:59',
               '2017-01-02 00:01:00', '2017-01-02 00:01:01',
               '2017-01-02 00:01:02', '2017-01-02 00:01:03',
               '2017-01-02 00:01:04', '2017-01-02 00:01:05',
               '2017-01-02 00:01:06', '2017-01-02 00:01:07',
               '2017-01-02 00:01:08', '2017-01-02 00:01:09',
               '2017-01-02 00:01:10', '2017-01-02 00:01:11',
               '2017-01-02 00:01:12', '2017-01-02 00:01:13',
               '2017-01-02 00:01:14', '2017-01-02 00:01:15',
               '2017-01-02 00:01:16', '2017-01-02 00:01:17',
               '2017-01-02 00:01:18', '2017-01-02 00:01:19',
               '2017-01-02 00:01:20', '2017-01-02 00:01:21',
               '2017-01-02 00:01:22', '2017-01-02 00:01:23',
               '2017-01-02 00:01:24', '2017-01-02 00:01:25',
               '2017-01-02 00:01:26', '2017-01-02 00:01:27',
               '2017-01-02 00:01:28', '2017-01-02 00:01:29',
               '2017-01-02 00:01:30', '2017-01-02 00:01:31',
               '2017-01-02 00:01:32', '2017-01-02 00:01:33',
               '2017-01-02 00:01:34', '2017-01-02 00:01:35',
               '2017-01-02 00:01:36', '2017-01-02 00:01:37',
               '2017-01-02 00:01:38', '2017-01-02 00:01:39'],
              dtype='datetime64[ns]', freq='S')
In [133]:
ts =pd.Series(np.random.randint(0,500,len(rng)),index=rng)
ts
Out[133]:
2017-01-02 00:00:00    251
2017-01-02 00:00:01     63
2017-01-02 00:00:02    108
2017-01-02 00:00:03    288
2017-01-02 00:00:04    491
2017-01-02 00:00:05    490
2017-01-02 00:00:06    343
2017-01-02 00:00:07    357
2017-01-02 00:00:08     72
2017-01-02 00:00:09    171
2017-01-02 00:00:10    324
2017-01-02 00:00:11    281
2017-01-02 00:00:12    176
2017-01-02 00:00:13     14
2017-01-02 00:00:14    495
2017-01-02 00:00:15    150
2017-01-02 00:00:16     69
2017-01-02 00:00:17    144
2017-01-02 00:00:18    126
2017-01-02 00:00:19    368
2017-01-02 00:00:20    129
2017-01-02 00:00:21    386
2017-01-02 00:00:22    228
2017-01-02 00:00:23    458
2017-01-02 00:00:24     98
2017-01-02 00:00:25    244
2017-01-02 00:00:26    206
2017-01-02 00:00:27     98
2017-01-02 00:00:28     92
2017-01-02 00:00:29    259
                      ... 
2017-01-02 00:01:10    127
2017-01-02 00:01:11    342
2017-01-02 00:01:12    185
2017-01-02 00:01:13    123
2017-01-02 00:01:14     73
2017-01-02 00:01:15    132
2017-01-02 00:01:16    462
2017-01-02 00:01:17    317
2017-01-02 00:01:18    180
2017-01-02 00:01:19    247
2017-01-02 00:01:20     97
2017-01-02 00:01:21    401
2017-01-02 00:01:22    342
2017-01-02 00:01:23    382
2017-01-02 00:01:24    304
2017-01-02 00:01:25     47
2017-01-02 00:01:26    193
2017-01-02 00:01:27    334
2017-01-02 00:01:28    196
2017-01-02 00:01:29    297
2017-01-02 00:01:30    195
2017-01-02 00:01:31    236
2017-01-02 00:01:32    200
2017-01-02 00:01:33    490
2017-01-02 00:01:34    196
2017-01-02 00:01:35    201
2017-01-02 00:01:36    397
2017-01-02 00:01:37    494
2017-01-02 00:01:38    482
2017-01-02 00:01:39    267
Freq: S, Length: 100, dtype: int32
In [7]:
ts.resample("5Min").sum()
Out[7]:
2017-01-02    22939
Freq: 5T, dtype: int32
In [9]:
ts.resample("1Min").sum()
Out[9]:
2017-01-02 00:00:00    13896
2017-01-02 00:01:00     9043
Freq: T, dtype: int32

Time zone representation.零时区 UTC表示。

In [10]:
rng= pd.date_range("2/1/2017 00:00",periods=5,freq="D")
rng
Out[10]:
DatetimeIndex(['2017-02-01', '2017-02-02', '2017-02-03', '2017-02-04',
               '2017-02-05'],
              dtype='datetime64[ns]', freq='D')
In [12]:
ts=pd.Series(np.random.randn(len(rng)),index=rng)
ts
Out[12]:
2017-02-01    0.329594
2017-02-02    2.097319
2017-02-03    1.852023
2017-02-04   -0.213452
2017-02-05    0.160873
Freq: D, dtype: float64
In [13]:
tsUtc=ts.tz_localize("UTC")
tsUtc
Out[13]:
2017-02-01 00:00:00+00:00    0.329594
2017-02-02 00:00:00+00:00    2.097319
2017-02-03 00:00:00+00:00    1.852023
2017-02-04 00:00:00+00:00   -0.213452
2017-02-05 00:00:00+00:00    0.160873
Freq: D, dtype: float64

Convert to another time zone.时区转换。

In [14]:
tsUtc.tz_convert("US/Eastern")
Out[14]:
2017-01-31 19:00:00-05:00    0.329594
2017-02-01 19:00:00-05:00    2.097319
2017-02-02 19:00:00-05:00    1.852023
2017-02-03 19:00:00-05:00   -0.213452
2017-02-04 19:00:00-05:00    0.160873
Freq: D, dtype: float64
In [15]:
tsUtc
Out[15]:
2017-02-01 00:00:00+00:00    0.329594
2017-02-02 00:00:00+00:00    2.097319
2017-02-03 00:00:00+00:00    1.852023
2017-02-04 00:00:00+00:00   -0.213452
2017-02-05 00:00:00+00:00    0.160873
Freq: D, dtype: float64

Converting between time span representations

In [16]:
rng=pd.date_range("1/8/2017",periods=5,freq="M")
rng
Out[16]:
DatetimeIndex(['2017-01-31', '2017-02-28', '2017-03-31', '2017-04-30',
               '2017-05-31'],
              dtype='datetime64[ns]', freq='M')
In [18]:
ts=pd.Series(np.random.randn(len(rng)),rng)
ts
Out[18]:
2017-01-31    0.904523
2017-02-28   -0.470144
2017-03-31   -0.373244
2017-04-30    0.860448
2017-05-31    0.176226
Freq: M, dtype: float64
In [20]:
ps=ts.to_period()
ps
Out[20]:
2017-01    0.904523
2017-02   -0.470144
2017-03   -0.373244
2017-04    0.860448
2017-05    0.176226
Freq: M, dtype: float64
In [21]:
ps.to_timestamp()
Out[21]:
2017-01-01    0.904523
2017-02-01   -0.470144
2017-03-01   -0.373244
2017-04-01    0.860448
2017-05-01    0.176226
Freq: MS, dtype: float64
In [22]:
ps
Out[22]:
2017-01    0.904523
2017-02   -0.470144
2017-03   -0.373244
2017-04    0.860448
2017-05    0.176226
Freq: M, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

In [23]:
prng=pd.period_range("1990Q1","2017Q4",freq="Q-NOV")
prng
Out[23]:
PeriodIndex(['1990Q1', '1990Q2', '1990Q3', '1990Q4', '1991Q1', '1991Q2',
             '1991Q3', '1991Q4', '1992Q1', '1992Q2',
             ...
             '2015Q3', '2015Q4', '2016Q1', '2016Q2', '2016Q3', '2016Q4',
             '2017Q1', '2017Q2', '2017Q3', '2017Q4'],
            dtype='period[Q-NOV]', length=112, freq='Q-NOV')
In [25]:
ts= pd.Series(np.random.randn(len(prng)),prng)
ts.head()
Out[25]:
1990Q1    1.193031
1990Q2    0.621627
1990Q3   -0.235553
1990Q4    0.642938
1991Q1    0.247024
Freq: Q-NOV, dtype: float64
In [26]:
ts.index=(prng.asfreq("M","e")+1).asfreq("H","s")+9
ts.head()
Out[26]:
1990-03-01 09:00    1.193031
1990-06-01 09:00    0.621627
1990-09-01 09:00   -0.235553
1990-12-01 09:00    0.642938
1991-03-01 09:00    0.247024
Freq: H, dtype: float64

Categoricals

In [34]:
df = pd.DataFrame({
        "id":[1,2,3,4,5,6],"raw_grade":["a","a","c","b","b","f"]})
df
Out[34]:
  id raw_grade
0 1 a
1 2 a
2 3 c
3 4 b
4 5 b
5 6 f

Convert the raw grades to a categorical data type.

In [35]:
df["grade"]=df.raw_grade.astype("category")
df
Out[35]:
  id raw_grade grade
0 1 a a
1 2 a a
2 3 c c
3 4 b b
4 5 b b
5 6 f f
In [36]:
df.grade #Convert the raw grades to a categorical data type
Out[36]:
0    a
1    a
2    c
3    b
4    b
5    f
Name: grade, dtype: category
Categories (4, object): [a, b, c, f]
In [37]:
# Rename the categories to more meaningful names (assigning to Series.cat.categories is inplace!)

df.grade.cat.categories=["very good","good","nomal","bad"]
df
Out[37]:
  id raw_grade grade
0 1 a very good
1 2 a very good
2 3 c nomal
3 4 b good
4 5 b good
5 6 f bad
In [38]:
# Reorder the categories and simultaneously add the missing categories (methods under Series .cat return a new Series per default).

df.grade=df.grade.cat.set_categories(["very bad", "bad", "medium","good", "very good"])
df.grade
Out[38]:
0    very good
1    very good
2          NaN
3         good
4         good
5          bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
In [39]:
df
Out[39]:
  id raw_grade grade
0 1 a very good
1 2 a very good
2 3 c NaN
3 4 b good
4 5 b good
5 6 f bad

Sorting is per order in the categories, not lexical order

In [40]:
df.sort_values(by="grade")
Out[40]:
  id raw_grade grade
2 3 c NaN
5 6 f bad
3 4 b good
4 5 b good
0 1 a very good
1 2 a very good

Grouping by a categorical column shows also empty categories

In [41]:
df.groupby("grade").size()
Out[41]:
grade
very bad     0
bad          1
medium       0
good         2
very good    2
dtype: int64

Plotting

In [43]:
ts=pd.Series(np.random.randn(1000),index=pd.date_range("1/1/2017",periods=1000))
ts.head()
Out[43]:
2017-01-01   -0.745067
2017-01-02   -0.070895
2017-01-03    0.233542
2017-01-04   -0.206597
2017-01-05    0.891064
Freq: D, dtype: float64
In [45]:
ts=ts.cumsum()
ts.head()
Out[45]:
2017-01-01   -0.745067
2017-01-02   -1.561029
2017-01-03   -2.143449
2017-01-04   -2.932466
2017-01-05   -2.830418
Freq: D, dtype: float64
In [48]:
ts.plot()
Out[48]:
<matplotlib.axes._subplots.AxesSubplot at 0x19bf6a6e278>
In [50]:
df=pd.DataFrame(np.random.randn(1000,4),index=ts.index,columns=["A","B","C","D"])
df.head()
Out[50]:
  A B C D
2017-01-01 -1.940139 -0.476590 -0.154066 1.692812
2017-01-02 0.399891 0.268976 0.596209 -0.484979
2017-01-03 0.814519 -0.142193 -0.084394 -0.687342
2017-01-04 0.385848 -1.230059 -0.093327 -0.096652
2017-01-05 0.407435 -0.849347 0.379192 0.172933
In [51]:
df=df.cumsum()
In [53]:
plt.figure()
df.plot()
plt.legend(loc="best")
plt.show()
<matplotlib.figure.Figure at 0x19bf8855da0>
<matplotlib.figure.Figure at 0x19bf897dc88>

Getting Data In/Out

CSV

In [ ]:
df.to_csv("foo.csv")
In [ ]:
pd.read_csv("foo.csv")

HDF5

In [ ]:
df.to_hdf("foo.h5","df")
In [ ]:
pd.read_hdf("foo.h5","df")

Excel

In [ ]:
df.to_excel('foo.xlsx', sheet_name='Sheet1')
In [ ]:
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
In [ ]:
 
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/sirwill/article/details/78379813

智能推荐

稳定性专题 | StackOverFlowError 常见原因及解决方法-程序员宅基地

文章浏览阅读404次。每一个 JVM 线程都拥有一个私有的 JVM 线程栈,用于存放当前线程的 JVM 栈帧(包括被调用函数的参数、局部变量和返回地址等)。如果某个线程的线程栈空间被耗尽,没有...

javascript 实现Vue.js路由_js将数组转化成vue路由的形式-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏6次。javascript 原生实现 Vue.js的路由切换功能,模拟单页应用上效果图:源码如下:<!-- author:helang Email:[email protected]><!DOCTYPE html><html lang="en"><head> <meta charset="U..._js将数组转化成vue路由的形式

C++——STL标准模板库——容器详解——set_c++ set容器-程序员宅基地

文章浏览阅读1.1k次,点赞24次,收藏17次。set容器和multiset容器详解。第一次接触对组的概念。使用中要小心迭代过程中插入或者删除元素迭代器迭代器失效的可能性。_c++ set容器

CRLF学习了解-程序员宅基地

文章浏览阅读1k次。在ASCII中,回车(CR)字符用十进制值13或十六进制值0x0D表示,换行(LF)字符用十进制值10或十六进制值0x0A表示。这两个字符通常一起使用,表示将光标移到下一行的开头位置。CRLF在许多操作系统和编程环境中被广泛使用,例如Windows中的文本文件和网络通信中的协议,如HTTP和SMTP。它们是文本格式化和解析的重要元素。_crlf

python全栈开发—函数再战—实现模块化设计_全栈开发与数学-程序员宅基地

文章浏览阅读256次。函数再战—熟练基础,精通技能,触类旁通之所以又整理了一遍函数,主要是因为当我进行后续学习的时候,发现函数比想象的要NB的多,于是又厚着脸皮又来了一遍,嗯,果然很NB。建议在学习的过程中遇到了难题,记得回头复习复习,也许正是那些你忽略的内容,给未来的你营造出自己是SB的难题。内容概括:函数基本语法及特性函数与局部变量返回值嵌套函数递归匿名函数函数式编程介绍高阶函数内置函数..._全栈开发与数学

在vs开发环境中用opencv读取图片,Debug模式下成功,release模式下失败的可能原因_visual studio的debug模式可以include opencv release模式不行-程序员宅基地

文章浏览阅读921次。1 检查一下release模式下的链接器的输入,其依赖的lib名称最后一个字母是没有"d",d代表debug如图:2 检查一下路径,看是否因为带中文的路径导致编码错误..._visual studio的debug模式可以include opencv release模式不行

随便推点

PLC与触摸屏通信_plc和触摸屏如何通信-程序员宅基地

文章浏览阅读5.5k次。下载plc程序;a.插上线时,设置PG/PC接口会出现下载线的名字,可以单击进行修改参数,设置和PLC一样的参数(这里的地址对应接口0,1)就可以通信了;b.记住PLC上的两个接口0,1接口,不要改plc软件中的系统块参数。下载触摸屏程序;a.需要注意的是在MCGS中,设置通用串口父设备中选择COM2,COM2是485通信,然后设置设备0(PLC S7-200)中的设备地址,这里的地址对应与PLC中系统块的地址,不是实际的接口号0,1;b设置触摸屏通信地址:断电重启触摸屏。开机后.._plc和触摸屏如何通信

使用 CI/CD 优化前端构建的五种策略-程序员宅基地

文章浏览阅读311次。如今使用 CI/CD 工具是网页应用程序开发的一个必要条件。作为关键开发路径的一部分,加快构建系统的速度对于提高开发人员的生产效率是至关重要的。原文地址:5 Strategies to R..._cicd优化

Crank Storyboard Suite入门(一)_crank_storyboard_suite-v5.3.0-程序员宅基地

文章浏览阅读3.5k次,点赞4次,收藏5次。Crank Storyboard Suite是一个十分容易学习的用来设计嵌入式界面的软件,软件可以导出为Android上可执行的apk文件。下面从最简单的例子开始,建立一个如下所示的界面,上面的图标有按下的效果。1)选择File->New->Storyboard Application新近一个工程。2. 在工程里面的文件夹里_crank_storyboard_suite-v5.3.0

爬虫框架 - feapder_feapder 网盘-程序员宅基地

文章浏览阅读1.0k次。1. 前言众所周知,Python 最流行的爬虫框架是 Scrapy,它主要用于爬取网站结构性数据今天推荐一款更加简单、轻量级,且功能强大的爬虫框架:feapder项目地址:https://github.com/Boris-code/feapder2. 介绍及安装和 Scrapy 类似,feapder 支持轻量级爬虫、分布式爬虫、批次爬虫、爬虫报警机制等功能内置的 3 种爬虫如下: AirSpider 轻量级爬虫,适合简单场景、数据量少的爬虫 Spider._feapder 网盘

《数据结构与算法分析:Java语言描述》.pdf-程序员宅基地

文章浏览阅读6k次,点赞2次,收藏6次。关注“Java后端技术全栈”回复“面试”获取全套大厂面试资料程序=数据结构+算法这好比是软件工程师的“武林秘籍”。数据结构指的是数据与数据之间的逻辑关系;算法指的是解决特定问题的步骤和方..._数据结构与算法分析java语言描述pdf

PyTorch——自注意力(self-attention)机制实现(代码详解)_自注意力机制代码-程序员宅基地

文章浏览阅读8w次,点赞111次,收藏691次。参考链接https://www.bilibili.com/video/BV1JE411g7XF?p=54https://arxiv.org/abs/1706.03762https://blog.csdn.net/qq_36653505/article/details/83375160简述自注意力机制(self-attention)self-attention可以视为一个特征提取层,给定输入特征a1,a2,⋅⋅⋅ana^{1},a^{2},\cdot \cdot \cdot a^{n}a1,a2_自注意力机制代码