四元数和旋转矩阵_四元数 旋转矩阵-程序员宅基地

技术标签: 图形学  旋转矩阵  四元素  欧拉角  

 

四元数和旋转矩阵


Quaternion(四元数)

Quaternion 的定义
四元数一般定义如下:
    q=w+xi+yj+zk
其中 w,x,y,z是实数。同时,有:
    i*i=-1
    j*j=-1
    k*k=-1

四元数也可以表示为:
    q=[w,v]
其中v=(x,y,z)是矢量,w是标量,虽然v是矢量,但不能简单的理解为3D空间的矢量,它是4维空间中的的矢量,也是非常不容易想像的。
通俗的讲,一个四元数(Quaternion)描述了一个旋转轴和一个旋转角度。这个旋转轴和这个角度可以通过 Quaternion::ToAngleAxis转换得到。当然也可以随意指定一个角度一个旋转轴来构造一个Quaternion。这个角度是相对于单位四元数而言的,也可以说是相对于物体的初始方向而言的。
当用一个四元数乘以一个向量时,实际上就是让该向量围绕着这个四元数所描述的旋转轴,转动这个四元数所描述的角度而得到的向量。


四元组的优点
有多种方式可表示旋转,如 axis/angle、欧拉角(Euler angles)、矩阵(matrix)、四元组等。 相对于其它方法,四元组有其本身的优点:
四元数不会有欧拉角存在的 gimbal lock 问题
四元数由4个数组成,旋转矩阵需要9个数
两个四元数之间更容易插值
四元数、矩阵在多次运算后会积攒误差,需要分别对其做规范化(normalize)和正交化(orthogonalize),对四元数规范化更容易
与旋转矩阵类似,两个四元组相乘可表示两次旋转


Quaternion 的基本运算
Normalizing a quaternion

// normalising a quaternion works similar to a vector. This method will not do anything
// if the quaternion is close enough to being unit-length. define TOLERANCE as something
// small like 0.00001f to get accurate results
void Quaternion::normalise()
{
// Don't normalize if we don't have to
float mag2 = w * w + x * x + y * y + z * z;
if (  mag2!=0.f && (fabs(mag2 - 1.0f) > TOLERANCE)) {
float mag = sqrt(mag2);
w /= mag;
x /= mag;
y /= mag;
z /= mag;
}
}


The complex conjugate of a quaternion


// We need to get the inverse of a quaternion to properly apply a quaternion-rotation to a vector
// The conjugate of a quaternion is the same as the inverse, as long as the quaternion is unit-length
Quaternion Quaternion::getConjugate()
{
return Quaternion(-x, -y, -z, w);
}


Multiplying quaternions


// Multiplying q1 with q2 applies the rotation q2 to q1
Quaternion Quaternion::operator* (const Quaternion &rq) const
{
// the constructor takes its arguments as (x, y, z, w)
return Quaternion(w * rq.x + x * rq.w + y * rq.z - z * rq.y,
                 w * rq.y + y * rq.w + z * rq.x - x * rq.z,
                 w * rq.z + z * rq.w + x * rq.y - y * rq.x,
                 w * rq.w - x * rq.x - y * rq.y - z * rq.z);
}



Rotating vectors


// Multiplying a quaternion q with a vector v applies the q-rotation to v
Vector3 Quaternion::operator* (const Vector3 &vec) const
{
Vector3 vn(vec);
vn.normalise();


Quaternion vecQuat, resQuat;
vecQuat.x = vn.x;
vecQuat.y = vn.y;
vecQuat.z = vn.z;
vecQuat.w = 0.0f;


resQuat = vecQuat * getConjugate();
resQuat = *this * resQuat;


return (Vector3(resQuat.x, resQuat.y, resQuat.z));
}



How to convert to/from quaternions1
Quaternion from axis-angle


// Convert from Axis Angle
void Quaternion::FromAxis(const Vector3 &v, float angle)
{
float sinAngle;
angle *= 0.5f;
Vector3 vn(v);
vn.normalise();


sinAngle = sin(angle);


x = (vn.x * sinAngle);
y = (vn.y * sinAngle);
z = (vn.z * sinAngle);
w = cos(angle);
}



Quaternion from Euler angles


// Convert from Euler Angles
void Quaternion::FromEuler(float pitch, float yaw, float roll)
{
// Basically we create 3 Quaternions, one for pitch, one for yaw, one for roll
// and multiply those together.
// the calculation below does the same, just shorter


float p = pitch * PIOVER180 / 2.0;
float y = yaw * PIOVER180 / 2.0;
float r = roll * PIOVER180 / 2.0;


float sinp = sin(p);
float siny = sin(y);
float sinr = sin(r);
float cosp = cos(p);
float cosy = cos(y);
float cosr = cos(r);


this->x = sinr * cosp * cosy - cosr * sinp * siny;
this->y = cosr * sinp * cosy + sinr * cosp * siny;
this->z = cosr * cosp * siny - sinr * sinp * cosy;
this->w = cosr * cosp * cosy + sinr * sinp * siny;


normalise();
}


Quaternion to Matrix


// Convert to Matrix
Matrix4 Quaternion::getMatrix() const
{
float x2 = x * x;
float y2 = y * y;
float z2 = z * z;
float xy = x * y;
float xz = x * z;
float yz = y * z;
float wx = w * x;
float wy = w * y;
float wz = w * z;


// This calculation would be a lot more complicated for non-unit length quaternions
// Note: The constructor of Matrix4 expects the Matrix in column-major format like expected by
//   OpenGL
return Matrix4( 1.0f - 2.0f * (y2 + z2), 2.0f * (xy - wz), 2.0f * (xz + wy), 0.0f,
2.0f * (xy + wz), 1.0f - 2.0f * (x2 + z2), 2.0f * (yz - wx), 0.0f,
2.0f * (xz - wy), 2.0f * (yz + wx), 1.0f - 2.0f * (x2 + y2), 0.0f,
0.0f, 0.0f, 0.0f, 1.0f)
}


Quaternion to axis-angle


// Convert to Axis/Angles
void Quaternion::getAxisAngle(Vector3 *axis, float *angle)
{
float scale = sqrt(x * x + y * y + z * z);
axis->x = x / scale;
axis->y = y / scale;
axis->z = z / scale;
*angle = acos(w) * 2.0f;
}


Quaternion 插值
线性插值
最简单的插值算法就是线性插值,公式如:
    q(t)=(1-t)q1 + t q2
但这个结果是需要规格化的,否则q(t)的单位长度会发生变化,所以


    q(t)=(1-t)q1+t q2 / || (1-t)q1+t q2 ||


球形线性插值
尽管线性插值很有效,但不能以恒定的速率描述q1到q2之间的曲线,这也是其弊端,我们需要找到一种插值方法使得q1->q(t)之间的夹角θ是线性的,即θ(t)=(1-t)θ1+t*θ2,这样我们得到了球形线性插值函数q(t),如下:


q(t)=q1 * sinθ(1-t)/sinθ + q2 * sinθt/sineθ


如果使用D3D,可以直接使用 D3DXQuaternionSlerp 函数就可以完成这个插值过程。
用 Quaternion 实现 Camera 旋转
总体来讲,Camera 的操作可分为如下几类:
沿直线移动
围绕某轴自转
围绕某轴公转
下面是一个使用了 Quaternion 的 Camera 类:


    class Camera {

    private:
        Quaternion m_orientation;

    public:
        void rotate (const Quaternion& q);
        void rotate(const Vector3& axis, const Radian& angle);
        void roll (const GLfloat angle);
        void yaw (const GLfloat angle);
        void pitch (const GLfloat angle);
    };

    void Camera::rotate(const Quaternion& q)
    {
        // Note the order of the mult, i.e. q comes after
        m_Orientation = q * m_Orientation;
    }

    void Camera::rotate(const Vector3& axis, const Radian& angle)
    {
        Quaternion q;
        q.FromAngleAxis(angle,axis);
        rotate(q);
    }


    void Camera::roll (const GLfloat angle) //in radian
    {
        Vector3 zAxis = m_Orientation * Vector3::UNIT_Z;
        rotate(zAxis, angleInRadian);
    }

    void Camera::yaw (const GLfloat angle)  //in degree
    {
        Vector3 yAxis;
        {
            // Rotate around local Y axis
            yAxis = m_Orientation * Vector3::UNIT_Y;
        }
        rotate(yAxis, angleInRadian);
    }

    void Camera::pitch (const GLfloat angle)  //in radian
    {
        Vector3 xAxis = m_Orientation * Vector3::UNIT_X;
        rotate(xAxis, angleInRadian);
    }

    void Camera::gluLookAt() {
        GLfloat m[4][4];
        identf(&m[0][0]);
        m_Orientation.createMatrix (&m[0][0]);


        glMultMatrixf(&m[0][0]);
        glTranslatef(-m_eyex, -m_eyey, -m_eyez);
    }


用 Quaternion 实现 trackball


用鼠标拖动物体在三维空间里旋转,一般设计一个 trackball,其内部实现也常用四元数。

class TrackBall
{
public:
    TrackBall();

    void push(const QPointF& p);
    void move(const QPointF& p);
    void release(const QPointF& p);

    QQuaternion rotation() const;

private:
    QQuaternion m_rotation;
    QVector3D m_axis;
    float m_angularVelocity;

    QPointF m_lastPos;
};


void TrackBall::move(const QPointF& p)
{
    if (!m_pressed)
        return;

    QVector3D lastPos3D = QVector3D(m_lastPos.x(), m_lastPos.y(), 0.0f);
    float sqrZ = 1 - QVector3D::dotProduct(lastPos3D, lastPos3D);
    if (sqrZ > 0)
        lastPos3D.setZ(sqrt(sqrZ));
    else
        lastPos3D.normalize();

    QVector3D currentPos3D = QVector3D(p.x(), p.y(), 0.0f);
    sqrZ = 1 - QVector3D::dotProduct(currentPos3D, currentPos3D);
    if (sqrZ > 0)
        currentPos3D.setZ(sqrt(sqrZ));
    else
        currentPos3D.normalize();

    m_axis = QVector3D::crossProduct(lastPos3D, currentPos3D);
    float angle = 180 / PI * asin(sqrt(QVector3D::dotProduct(m_axis, m_axis)));

    m_axis.normalize();
    m_rotation = QQuaternion::fromAxisAndAngle(m_axis, angle) * m_rotation;

    m_lastPos = p;
}



---------------------------------------------------------------------------------------------------------

每一个单位四元数都可以对应到一个旋转矩阵

单位四元数q=(s,V)的共轭为q*=(s,-V)

单位四元数的模为||q||=1;

四元数q=(s,V)的逆q^(-1)=q*/(||q||)=q*

一个向量r,沿着向量n旋转a角度之后的向量是哪个(假设为v),这个用四元数可以轻松搞定

构造两个四元数q=(cos(a/2),sin(a/2)*n),p=(0,r)

p`=q * p * q^(-1) 这个可以保证求出来的p`也是(0,r`)形式的,求出的r`就是r旋转后的向量

另外其实对p做q * p * q^(-1)操作就是相当于对p乘了一个旋转矩阵,这里先假设 q=(cos(a/2),sin(a/2)*n)=(s,(x, y, z))


两个四元数相乘也表示一个旋转
Q1 * Q2 表示先以Q2旋转,再以Q1旋转

则这个矩阵为

同理一个旋转矩阵也可以转换为一个四元数,即给你一个旋转矩阵可以求出(s,x,y,z)这个四元数,

方法是:




版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ycl295644/article/details/50961201

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线

推荐文章

热门文章

相关标签