9 循环神经网络——具有记忆功能的网络(1)_具有场景记忆功能的网络-程序员宅基地

技术标签: 深度学习之TensorFlow入门、原理与进阶实战  

9-23 yuyinchall
准备一批带有文字标注的语音样本,构建BiRNN网络,通过该语料样本进行训练,实现一个能够识别语音的神经网络模型

程序:

import numpy as np
import time
import tensorflow as tf
from tensorflow.python.ops import ctc_ops
from collections import Counter

#2 样本读取
## 自定义
yuyinutils = __import__("9-24  yuyinutils")
sparse_tuple_to_texts_ch = yuyinutils.sparse_tuple_to_texts_ch
ndarray_to_text_ch = yuyinutils.ndarray_to_text_ch
get_audio_and_transcriptch = yuyinutils.get_audio_and_transcriptch
pad_sequences = yuyinutils.pad_sequences
sparse_tuple_from = yuyinutils.sparse_tuple_from
get_wavs_lables = yuyinutils.get_wavs_lables

tf.reset_default_graph()

b_stddev = 0.046875
h_stddev = 0.046875

n_hidden = 1024
n_hidden_1 = 1024
n_hidden_2 = 1024
n_hidden_5 = 1024
n_cell_dim = 1024
n_hidden_3 = 2 * 1024

keep_dropout_rate = 0.95
relu_clip = 20

#使用3个1024节点的全连接层,然后是一个双向RNN,最后接上2个全连接层,并且都带有dropout层。这里使用的激活函数是带截断的Relu,截断值设为20。学习参数的初始化使用标准差为0.046875的random_normal。keep_dropout_rate为0.95.
def BiRNN_model(batch_x, seq_length, n_input, n_context, n_character, keep_dropout):
    # batch_x_shape: [batch_size, n_steps, n_input + 2*n_input*n_context]
    batch_x_shape = tf.shape(batch_x)

    # 将输入转成时间序列优先
    batch_x = tf.transpose(batch_x, [1, 0, 2])
    # 再转成2维传入第一层
    batch_x = tf.reshape(batch_x,
                         [-1, n_input + 2 * n_input * n_context])  # (n_steps*batch_size, n_input + 2*n_input*n_context)

    # 使用clipped RELU activation and dropout.
    # 1st layer
    with tf.name_scope('fc1'):
        b1 = variable_on_cpu('b1', [n_hidden_1], tf.random_normal_initializer(stddev=b_stddev))
        h1 = variable_on_cpu('h1', [n_input + 2 * n_input * n_context, n_hidden_1],
                             tf.random_normal_initializer(stddev=h_stddev))
        layer_1 = tf.minimum(tf.nn.relu(tf.add(tf.matmul(batch_x, h1), b1)), relu_clip)
        layer_1 = tf.nn.dropout(layer_1, keep_dropout)

    # 2nd layer
    with tf.name_scope('fc2'):
        b2 = variable_on_cpu('b2', [n_hidden_2], tf.random_normal_initializer(stddev=b_stddev))
        h2 = variable_on_cpu('h2', [n_hidden_1, n_hidden_2], tf.random_normal_initializer(stddev=h_stddev))
        layer_2 = tf.minimum(tf.nn.relu(tf.add(tf.matmul(layer_1, h2), b2)), relu_clip)
        layer_2 = tf.nn.dropout(layer_2, keep_dropout)

    # 3rd layer
    with tf.name_scope('fc3'):
        b3 = variable_on_cpu('b3', [n_hidden_3], tf.random_normal_initializer(stddev=b_stddev))
        h3 = variable_on_cpu('h3', [n_hidden_2, n_hidden_3], tf.random_normal_initializer(stddev=h_stddev))
        layer_3 = tf.minimum(tf.nn.relu(tf.add(tf.matmul(layer_2, h3), b3)), relu_clip)
        layer_3 = tf.nn.dropout(layer_3, keep_dropout)

    # 双向rnn
    with tf.name_scope('lstm'):
        # Forward direction cell:
        lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(n_cell_dim, forget_bias=1.0, state_is_tuple=True)
        lstm_fw_cell = tf.contrib.rnn.DropoutWrapper(lstm_fw_cell,
                                                     input_keep_prob=keep_dropout)
        # Backward direction cell:
        lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(n_cell_dim, forget_bias=1.0, state_is_tuple=True)
        lstm_bw_cell = tf.contrib.rnn.DropoutWrapper(lstm_bw_cell,
                                                     input_keep_prob=keep_dropout)

        # `layer_3`  `[n_steps, batch_size, 2*n_cell_dim]`
        layer_3 = tf.reshape(layer_3, [-1, batch_x_shape[0], n_hidden_3])

        outputs, output_states = tf.nn.bidirectional_dynamic_rnn(cell_fw=lstm_fw_cell,
                                                                 cell_bw=lstm_bw_cell,
                                                                 inputs=layer_3,
                                                                 dtype=tf.float32,
                                                                 time_major=True,
                                                                 sequence_length=seq_length)

        # 连接正反向结果[n_steps, batch_size, 2*n_cell_dim]
        outputs = tf.concat(outputs, 2)
        # to a single tensor of shape [n_steps*batch_size, 2*n_cell_dim]
        outputs = tf.reshape(outputs, [-1, 2 * n_cell_dim])

    with tf.name_scope('fc5'):
        b5 = variable_on_cpu('b5', [n_hidden_5], tf.random_normal_initializer(stddev=b_stddev))
        h5 = variable_on_cpu('h5', [(2 * n_cell_dim), n_hidden_5], tf.random_normal_initializer(stddev=h_stddev))
        layer_5 = tf.minimum(tf.nn.relu(tf.add(tf.matmul(outputs, h5), b5)), relu_clip)
        layer_5 = tf.nn.dropout(layer_5, keep_dropout)

    with tf.name_scope('fc6'):
        # 全连接层用于softmax分类
        b6 = variable_on_cpu('b6', [n_character], tf.random_normal_initializer(stddev=b_stddev))
        h6 = variable_on_cpu('h6', [n_hidden_5, n_character], tf.random_normal_initializer(stddev=h_stddev))
        layer_6 = tf.add(tf.matmul(layer_5, h6), b6)

    # 将2维[n_steps*batch_size, n_character]转成3维 time-major [n_steps, batch_size, n_character].
    layer_6 = tf.reshape(layer_6, [-1, batch_x_shape[0], n_character])

    # Output shape: [n_steps, batch_size, n_character]
    return layer_6


"""
used to create a variable in CPU memory.
"""


def variable_on_cpu(name, shape, initializer):
    # Use the /cpu:0 device for scoped operations
    with tf.device('/cpu:0'):
        # Create or get apropos variable
        var = tf.get_variable(name=name, shape=shape, initializer=initializer)
    return var


wav_path = 'F:/shendu/yuyinchall/wav/wav/train'
label_file = 'F:/shendu/yuyinchall/doc/doc/trans/train.word.txt'

wav_files, labels = get_wavs_lables(wav_path, label_file)
print(wav_files[0], labels[0])
# wav/train/A11/A11_0.WAV -> 绿 是 阳春 烟 景 大块 文章 的 底色 四月 的 林 峦 更是 绿 得 鲜活 秀媚 诗意 盎然

print("wav:", len(wav_files), "label", len(labels))
'''----------------------------------------------------------------------'''
#3 建立批次获取样本函数
# 字表
all_words = []
for label in labels:
    # print(label)
    all_words += [word for word in label]
counter = Counter(all_words)
words = sorted(counter)
words_size = len(words)
word_num_map = dict(zip(words, range(words_size)))

print('字表大小:', words_size)

n_input = 26  # 计算美尔倒谱系数的个数
n_context = 9  # 对于每个时间点,要包含上下文样本的个数
batch_size = 8


def next_batch(labels, start_idx=0, batch_size=1, wav_files=wav_files):
    filesize = len(labels)
    end_idx = min(filesize, start_idx + batch_size)
    idx_list = range(start_idx, end_idx)
    txt_labels = [labels[i] for i in idx_list]
    wav_files = [wav_files[i] for i in idx_list]
    (source, audio_len, target, transcript_len) = get_audio_and_transcriptch(None,
                                                                             wav_files,
                                                                             n_input,
                                                                             n_context, word_num_map, txt_labels)

    start_idx += batch_size
    # Verify that the start_idx is not larger than total available sample size
    if start_idx >= filesize:
        start_idx = -1

    # Pad input to max_time_step of this batch
    source, source_lengths = pad_sequences(source)  # 如果多个文件将长度统一,支持按最大截断或补0
    sparse_labels = sparse_tuple_from(target)

    return start_idx, source, source_lengths, sparse_labels


next_idx, source, source_len, sparse_lab = next_batch(labels, 0, batch_size)
print(len(sparse_lab))
print(np.shape(source))
# print(sparse_lab)
t = sparse_tuple_to_texts_ch(sparse_lab, words)
print(t[0])
# source已经将变为前9(不够补空)+本身+后9,每个26,第一个顺序是第10个的数据。
'''---------------------------------------------------------------------'''
#1 定义占位符
# shape = [batch_size, max_stepsize, n_input + (2 * n_input * n_context)]
# the batch_size and max_stepsize每步都是变长的。
input_tensor = tf.placeholder(tf.float32, [None, None, n_input + (2 * n_input * n_context)],
                              name='input')  # 语音log filter bank or MFCC features
# Use sparse_placeholder; will generate a SparseTensor, required by ctc_loss op.
targets = tf.sparse_placeholder(tf.int32, name='targets')  # 文本
# 1d array of size [batch_size]
seq_length = tf.placeholder(tf.int32, [None], name='seq_length')  # 序列长
keep_dropout = tf.placeholder(tf.float32)
'''----------------------------------------------------------------------'''
#2 构建网络模型
# logits is the non-normalized output/activations from the last layer.
# logits will be input for the loss function.
# nn_model is from the import statement in the load_model function
logits = BiRNN_model(input_tensor, tf.to_int64(seq_length), n_input, n_context, words_size + 1, keep_dropout)
'''-----------'''






'''----------------------------------------------------------------------'''
#3 定义损失函数即优化器
# 调用ctc loss
avg_loss = tf.reduce_mean(ctc_ops.ctc_loss(targets, logits, seq_length))

# [optimizer]
learning_rate = 0.001
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(avg_loss)
'''----------------------------------------------------------------------'''
#4 定义解码,并评估模型节点
with tf.name_scope("decode"):
    decoded, log_prob = ctc_ops.ctc_beam_search_decoder(logits, seq_length, merge_repeated=False)

with tf.name_scope("accuracy"):
    distance = tf.edit_distance(tf.cast(decoded[0], tf.int32), targets)
    # 计算label error rate (accuracy)
    ler = tf.reduce_mean(distance, name='label_error_rate')
'''----------------------------------------------------------------------'''
#建立session并添加检查点处理
epochs = 100
savedir = "F:/shendu/yuyinchalltest/"
saver = tf.train.Saver(max_to_keep=1)  # 生成saver
# create the session
sess = tf.Session()
# 没有模型的话,就重新初始化
sess.run(tf.global_variables_initializer())

kpt = tf.train.latest_checkpoint(savedir)
print("kpt:", kpt)
startepo = 0
if kpt != None:
    saver.restore(sess, kpt)
    ind = kpt.find("-")
    startepo = int(kpt[ind + 1:])
    print(startepo)
'''----------------------------------------------------------------------'''
#6 通过循环来迭代训练模型
# 准备运行训练步骤
section = '\n{0:=^40}\n'
print(section.format('Run training epoch'))

train_start = time.time()
for epoch in range(epochs):  # 样本集迭代次数
    epoch_start = time.time()
    if epoch < startepo:
        continue

    print("epoch start:", epoch, "total epochs= ", epochs)
    #######################run batch####
    n_batches_per_epoch = int(np.ceil(len(labels) / batch_size))
    print("total loop ", n_batches_per_epoch, "in one epoch,", batch_size, "items in one loop")

    train_cost = 0
    train_ler = 0
    next_idx = 0

    for batch in range(n_batches_per_epoch):  # 一次batch_size,取多少次
        # 取数据
        next_idx, source, source_lengths, sparse_labels = \
            next_batch(labels, next_idx, batch_size)
        feed = {input_tensor: source, targets: sparse_labels, seq_length: source_lengths,
                keep_dropout: keep_dropout_rate}

        # 计算 avg_loss optimizer ;
        batch_cost, _ = sess.run([avg_loss, optimizer], feed_dict=feed)
        train_cost += batch_cost

        '''----------------------------------------------------------------------'''
        # 7 定期评估模型。输出模型解码结果
        if (batch + 1) % 20 == 0:
            print('loop:', batch, 'Train cost: ', train_cost / (batch + 1))
            feed2 = {input_tensor: source, targets: sparse_labels, seq_length: source_lengths, keep_dropout: 1.0}

            d, train_ler = sess.run([decoded[0], ler], feed_dict=feed2)
            dense_decoded = tf.sparse_tensor_to_dense(d, default_value=-1).eval(session=sess)
            dense_labels = sparse_tuple_to_texts_ch(sparse_labels, words)

            counter = 0
            print('Label err rate: ', train_ler)
            for orig, decoded_arr in zip(dense_labels, dense_decoded):
                # convert to strings
                decoded_str = ndarray_to_text_ch(decoded_arr, words)
                print(' file {}'.format(counter))
                print('Original: {}'.format(orig))
                print('Decoded:  {}'.format(decoded_str))
                counter = counter + 1
                break

    epoch_duration = time.time() - epoch_start

    log = 'Epoch {}/{}, train_cost: {:.3f}, train_ler: {:.3f}, time: {:.2f} sec'
    print(log.format(epoch, epochs, train_cost, train_ler, epoch_duration))
    saver.save(sess, savedir + "yuyinch.cpkt", global_step=epoch)

train_duration = time.time() - train_start
print('Training complete, total duration: {:.2f} min'.format(train_duration / 60))

sess.close()

结果:

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_43318717/article/details/94341699

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签