Project description
It provides:
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient
multi-dimensional container of generic data. Arbitrary data-types can be
defined. This allows NumPy to seamlessly and speedily integrate with a wide
variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Files for numpy, version 1.19.3
Filename, size
File type
Python version
Upload date
Hashes
File type
Wheel
Python version
cp36
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp36
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp36
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp36
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp36
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp36
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp36
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp36
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp37
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp37
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp37
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp37
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp37
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp37
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp37
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp37
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp38
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp38
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp38
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp38
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp38
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp38
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp38
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp38
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp39
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp39
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp39
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp39
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp39
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp39
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp39
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
cp39
Upload date
Oct 29, 2020
Hashes
View
File type
Wheel
Python version
pp36
Upload date
Oct 29, 2020
Hashes
View
Filename, size
numpy-1.19.3.zip
(7.3 MB)
File type
Source
Python version
None
Upload date
Oct 29, 2020
Hashes
View
Close
Hashes for numpy-1.19.3-cp36-cp36m-macosx_10_9_x86_64.whl
Hashes for numpy-1.19.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm
Hash digest
SHA256
942d2cdcb362739908c26ce8dd88db6e139d3fa829dd7452dd9ff02cba6b58b2
Copy
MD5
e5c6c782b2f112c32dcc38242521ec83
Copy
BLAKE2-256
e0aff0162434a9a6c92387dff095acc4ad143aae96065225d888f9151dcd667c
Copy
Close
Hashes for numpy-1.19.3-cp36-cp36m-manylinux1_i686.whl
Hashes for numpy-1.19.3-cp36-cp36m-manylinux1_i686.whl
Algorithm
Hash digest
SHA256
efd656893171bbf1331beca4ec9f2e74358fc732a2084f664fd149cc4b3441d2
Copy
MD5
02323e4a20e14e6f7cded1c55f6a0afe
Copy
BLAKE2-256
df219b5d17dc19efadb93adee718b7aed6685aae557a948b40b675e18cd59d9f
Copy
Close
Hashes for numpy-1.19.3-cp36-cp36m-manylinux1_x86_64.whl
Hashes for numpy-1.19.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm
Hash digest
SHA256
1a307bdd3dd444b1d0daa356b5f4c7de2e24d63bdc33ea13ff718b8ec4c6a268
Copy
MD5
95f19f0b6c60a755a8454f22eb15f4d6
Copy
BLAKE2-256
8f40ddb5109614aabad67e6fe426b3579a879b7b3cdd375eb27af467c4367ae0
Copy
Close
Hashes for numpy-1.19.3-cp36-cp36m-manylinux2010_i686.whl
Hashes for numpy-1.19.3-cp36-cp36m-manylinux2010_i686.whl
Algorithm
Hash digest
SHA256
9d08d84bb4128abb9fbd9f073e5c69f70e5dab991a9c42e5b4081ea5b01b5db0
Copy
MD5
e66cf5ea007a9b567be2b1a901b3d2e0
Copy
BLAKE2-256
46c3f4df90ff53c4dcadd18cb594fca35182697e590c7f9280e73e15391ac492
Copy
Close
Hashes for numpy-1.19.3-cp36-cp36m-manylinux2010_x86_64.whl
Hashes for numpy-1.19.3-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm
Hash digest
SHA256
7197ee0a25629ed782c7bd01871ee40702ffeef35bc48004bc2fdcc71e29ba9d
Copy
MD5
8c7d422f147392bd31f9e5bfc41a170e
Copy
BLAKE2-256
0ef7a7d7e0de99a7b43bd95aaddcf29e65b5a185ca389dd1329a53cc986edc38
Copy
Close
Hashes for numpy-1.19.3-cp36-cp36m-manylinux2014_aarch64.whl
Hashes for numpy-1.19.3-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm
Hash digest
SHA256
8edc4d687a74d0a5f8b9b26532e860f4f85f56c400b3a98899fc44acb5e27add
Copy
MD5
da02c95dcf0acf7688aebaba7ba2750d
Copy
BLAKE2-256
29a141c7c77b471baedd83d167911f73fe2e2fd76ac87474a1480113a15988ac
Copy
Close
Hashes for numpy-1.19.3-cp36-cp36m-win32.whl
Hashes for numpy-1.19.3-cp36-cp36m-win32.whl
Algorithm
Hash digest
SHA256
522053b731e11329dd52d258ddf7de5288cae7418b55e4b7d32f0b7e31787e9d
Copy
MD5
96e6ec05aca18516c8a5961c17a0cac6
Copy
BLAKE2-256
df88366fc356df427959dfd45a426917b755704385b6d82f69b26bf41dd4556e
Copy
Close
Hashes for numpy-1.19.3-cp36-cp36m-win_amd64.whl
Hashes for numpy-1.19.3-cp36-cp36m-win_amd64.whl
Algorithm
Hash digest
SHA256
eefc13863bf01583a85e8c1121a901cc7cb8f059b960c4eba30901e2e6aba95f
Copy
MD5
5aa36a829a7ce0a89e6fea502d4fa9ea
Copy
BLAKE2-256
c0d7fae31ed42256558cad59a13df72ba1312dcb6d303c0f97d918080577be74
Copy
Close
Hashes for numpy-1.19.3-cp37-cp37m-macosx_10_9_x86_64.whl
Hashes for numpy-1.19.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm
Hash digest
SHA256
6ff88bcf1872b79002569c63fe26cd2cda614e573c553c4d5b814fb5eb3d2822
Copy
MD5
9143b46601bc0457dd42795a71ccd2f1
Copy
BLAKE2-256
45f3f72071f9339638121c558f7ded890a55427472ac71828ca6141e9941234d
Copy
Close
Hashes for numpy-1.19.3-cp37-cp37m-manylinux1_i686.whl
Hashes for numpy-1.19.3-cp37-cp37m-manylinux1_i686.whl
Algorithm
Hash digest
SHA256
e080087148fd70469aade2abfeadee194357defd759f9b59b349c6192aba994c
Copy
MD5
ebe09a5e206db0de65154ef75377f963
Copy
BLAKE2-256
7ae64ccdcc5d127f157c046651cbb38eaccf41821f913d02b633205e3cd0cda6
Copy
Close
Hashes for numpy-1.19.3-cp37-cp37m-manylinux1_x86_64.whl
Hashes for numpy-1.19.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm
Hash digest
SHA256
50f68ebc439821b826823a8da6caa79cd080dee2a6d5ab9f1163465a060495ed
Copy
MD5
96008f5c61368d4cd967ecd474525df6
Copy
BLAKE2-256
ecb759f5e75e4f2c9c07b7e651d2ef7502354b254d73bec8c68df30a2d243c9f
Copy
Close
Hashes for numpy-1.19.3-cp37-cp37m-manylinux2010_i686.whl
Hashes for numpy-1.19.3-cp37-cp37m-manylinux2010_i686.whl
Algorithm
Hash digest
SHA256
b9074d062d30c2779d8af587924f178a539edde5285d961d2dfbecbac9c4c931
Copy
MD5
e61aaf0c971b667c5fed8b5de3773c6d
Copy
BLAKE2-256
d9cabcabed690c27c304965a58e36664e06160e711fca1a369a3b11611dd7fec
Copy
Close
Hashes for numpy-1.19.3-cp37-cp37m-manylinux2010_x86_64.whl
Hashes for numpy-1.19.3-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm
Hash digest
SHA256
463792a249a81b9eb2b63676347f996d3f0082c2666fd0604f4180d2e5445996
Copy
MD5
74a9f9dab6f00bcf56096eaa910c48b9
Copy
BLAKE2-256
65b307864c89acb2a86df6f2e8c9bf091ec5916da58dd3ce3a633a51a02c115e
Copy
Close
Hashes for numpy-1.19.3-cp37-cp37m-manylinux2014_aarch64.whl
Hashes for numpy-1.19.3-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm
Hash digest
SHA256
ea6171d2d8d648dee717457d0f75db49ad8c2f13100680e284d7becf3dc311a6
Copy
MD5
18d911f7f462ee98333de9579adde331
Copy
BLAKE2-256
a21a4f0d99910bcb7a0dcc94f78f47685183d963fa42d864cc80a837920f2309
Copy
Close
Hashes for numpy-1.19.3-cp37-cp37m-win32.whl
Hashes for numpy-1.19.3-cp37-cp37m-win32.whl
Algorithm
Hash digest
SHA256
0ee77786eebbfa37f2141fd106b549d37c89207a0d01d8852fde1c82e9bfc0e7
Copy
MD5
f29846178b82bd4e8db1685a6e911336
Copy
BLAKE2-256
00aaa3a61b043cb015acf190702a0f96625b74ec36f11980764d043a00e9513a
Copy
Close
Hashes for numpy-1.19.3-cp37-cp37m-win_amd64.whl
Hashes for numpy-1.19.3-cp37-cp37m-win_amd64.whl
Algorithm
Hash digest
SHA256
271139653e8b7a046d11a78c0d33bafbddd5c443a5b9119618d0652a4eb3a09f
Copy
MD5
d372be03d9e57e5e0e1372bf39391241
Copy
BLAKE2-256
e8c89a55f91d4a08652095bdbdfb3b2bb98e7d61146ef3341e3744bc3e7d7021
Copy
Close
Hashes for numpy-1.19.3-cp38-cp38-macosx_10_9_x86_64.whl
Hashes for numpy-1.19.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm
Hash digest
SHA256
e983cbabe10a8989333684c98fdc5dd2f28b236216981e0c26ed359aaa676772
Copy
MD5
c64b6538e07bca9d84287eebb3f3a01b
Copy
BLAKE2-256
cf7d642c5619482d032ac87f07b4944b9305f21bd2f6ee426ebc2e8595fe2f7b
Copy
Close
Hashes for numpy-1.19.3-cp38-cp38-manylinux1_i686.whl
Hashes for numpy-1.19.3-cp38-cp38-manylinux1_i686.whl
Algorithm
Hash digest
SHA256
d78294f1c20f366cde8a75167f822538a7252b6e8b9d6dbfb3bdab34e7c1929e
Copy
MD5
8ac57941de395be58376611b211ea571
Copy
BLAKE2-256
a8818bf696f64906dc8440834a225679e2a0aa30a9bb04a37fcfe849f77e91d6
Copy
Close
Hashes for numpy-1.19.3-cp38-cp38-manylinux1_x86_64.whl
Hashes for numpy-1.19.3-cp38-cp38-manylinux1_x86_64.whl
Algorithm
Hash digest
SHA256
199bebc296bd8a5fc31c16f256ac873dd4d5b4928dfd50e6c4995570fc71a8f3
Copy
MD5
81cc1993ac8da61fea677a7eb49989e8
Copy
BLAKE2-256
470e3ec0e737597fd7ddf343b6f243144fd7ea6ff3a2dcfe1e89857072dae79b
Copy
Close
Hashes for numpy-1.19.3-cp38-cp38-manylinux2010_i686.whl
Hashes for numpy-1.19.3-cp38-cp38-manylinux2010_i686.whl
Algorithm
Hash digest
SHA256
dffed17848e8b968d8d3692604e61881aa6ef1f8074c99e81647ac84f6038535
Copy
MD5
9b2b05db89068d1f3f32a231f3953355
Copy
BLAKE2-256
ffce4c71ecef46092c200d8716fa053b2ab56cbfa6c4692b80e419362f1d947e
Copy
Close
Hashes for numpy-1.19.3-cp38-cp38-manylinux2010_x86_64.whl
Hashes for numpy-1.19.3-cp38-cp38-manylinux2010_x86_64.whl
Algorithm
Hash digest
SHA256
5ea4401ada0d3988c263df85feb33818dc995abc85b8125f6ccb762009e7bc68
Copy
MD5
d26cfa5ad6f4aa6beb42246efc45f565
Copy
BLAKE2-256
bf69ea28cb47112f96c457d975569bd9b41fc856fa370c820644fc2fc4b5a87b
Copy
Close
Hashes for numpy-1.19.3-cp38-cp38-manylinux2014_aarch64.whl
Hashes for numpy-1.19.3-cp38-cp38-manylinux2014_aarch64.whl
Algorithm
Hash digest
SHA256
604d2e5a31482a3ad2c88206efd43d6fcf666ada1f3188fd779b4917e49b7a98
Copy
MD5
969a13b40fceb950021e297d5427f329
Copy
BLAKE2-256
73ec329ea555642973e8171827ee42a936e65c77905acc8dd45c80d4019fb69b
Copy
Close
Hashes for numpy-1.19.3-cp38-cp38-win32.whl
Hashes for numpy-1.19.3-cp38-cp38-win32.whl
Algorithm
Hash digest
SHA256
a2daea1cba83210c620e359de2861316f49cc7aea8e9a6979d6cb2ddab6dda8c
Copy
MD5
f978618640860e72b91c522f4e4085af
Copy
BLAKE2-256
4938eaab1f2b84b52548590a4360be57c69a32d40cf8f484b08a114cd6a9ece1
Copy
Close
Hashes for numpy-1.19.3-cp38-cp38-win_amd64.whl
Hashes for numpy-1.19.3-cp38-cp38-win_amd64.whl
Algorithm
Hash digest
SHA256
dfdc8b53aa9838b9d44ed785431ca47aa3efaa51d0d5dd9c412ab5247151a7c4
Copy
MD5
af140a06f216c4100dc93c4135003d10
Copy
BLAKE2-256
a42313d2991c156cfd22bfd4a9ae6dcb1a9372004a0e16508b680d17f3280eb4
Copy
Close
Hashes for numpy-1.19.3-cp39-cp39-macosx_10_9_x86_64.whl
Hashes for numpy-1.19.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm
Hash digest
SHA256
9f7f56b5e85b08774939622b7d45a5d00ff511466522c44fc0756ac7692c00f2
Copy
MD5
fda3cdf138516040cad3de66496cf670
Copy
BLAKE2-256
c4b0d9d96d7d93db90609e601da059554e80cef14e416d7683010819033945b9
Copy
Close
Hashes for numpy-1.19.3-cp39-cp39-manylinux1_i686.whl
Hashes for numpy-1.19.3-cp39-cp39-manylinux1_i686.whl
Algorithm
Hash digest
SHA256
8802d23e4895e0c65e418abe67cdf518aa5cbb976d97f42fd591f921d6dffad0
Copy
MD5
f683469f18abc8c84aa831d9e78f4eb6
Copy
BLAKE2-256
2b2f59b3481b3add992a561da6fddedec67e329efcb01a901702ee81088c1299
Copy
Close
Hashes for numpy-1.19.3-cp39-cp39-manylinux1_x86_64.whl
Hashes for numpy-1.19.3-cp39-cp39-manylinux1_x86_64.whl
Algorithm
Hash digest
SHA256
c4aa79993f5d856765819a3651117520e41ac3f89c3fc1cb6dee11aa562df6da
Copy
MD5
26414c3db751ca4735f744b239bf9703
Copy
BLAKE2-256
fdb49bb2a564e521b1625b90f7ed656e20649509ff316763e5f8b72c9b043667
Copy
Close
Hashes for numpy-1.19.3-cp39-cp39-manylinux2010_i686.whl
Hashes for numpy-1.19.3-cp39-cp39-manylinux2010_i686.whl
Algorithm
Hash digest
SHA256
51e8d2ae7c7e985c7bebf218e56f72fa93c900ad0c8a7d9fbbbf362f45710f69
Copy
MD5
3164ede05e3a5d28dd8bd66aee56928c
Copy
BLAKE2-256
f7ca46271f210e884f8c51402ef6836c40f5f909d9deb60082e9f5b2de94cc3d
Copy
Close
Hashes for numpy-1.19.3-cp39-cp39-manylinux2010_x86_64.whl
Hashes for numpy-1.19.3-cp39-cp39-manylinux2010_x86_64.whl
Algorithm
Hash digest
SHA256
50d3513469acf5b2c0406e822d3f314d7ac5788c2b438c24e5dd54d5a81ef522
Copy
MD5
fc0b0c73c5508247d21beb42cf3fff66
Copy
BLAKE2-256
c38d2ae53d96a92a66b8daa3dfb2dd6cf4bfcb8e3d4148bdd713c8fc7de83141
Copy
Close
Hashes for numpy-1.19.3-cp39-cp39-manylinux2014_aarch64.whl
Hashes for numpy-1.19.3-cp39-cp39-manylinux2014_aarch64.whl
Algorithm
Hash digest
SHA256
741d95eb2b505bb7a99fbf4be05fa69f466e240c2b4f2d3ddead4f1b5f82a5a5
Copy
MD5
75097b6e154469c63c50c8f7eaf52a89
Copy
BLAKE2-256
4a0b8e78d5358863518e6726f839240902f49a71749d9698d33ed5c9ea84e1b8
Copy
Close
Hashes for numpy-1.19.3-cp39-cp39-win32.whl
Hashes for numpy-1.19.3-cp39-cp39-win32.whl
Algorithm
Hash digest
SHA256
1ea7e859f16e72ab81ef20aae69216cfea870676347510da9244805ff9670170
Copy
MD5
cd4363bde576c997bf737f420a85683a
Copy
BLAKE2-256
faf2ee5cd9321ff158e78bbf428025369274878a4d67002dec41ca4ce12ac799
Copy
Close
Hashes for numpy-1.19.3-cp39-cp39-win_amd64.whl
Hashes for numpy-1.19.3-cp39-cp39-win_amd64.whl
Algorithm
Hash digest
SHA256
83af653bb92d1e248ccf5fdb05ccc934c14b936bcfe9b917dc180d3f00250ac6
Copy
MD5
54fa685b3d30585763f59a7b2be7279b
Copy
BLAKE2-256
47d841f71e08248b487e90eb6b5823077e93a8991be92b026b9727d4478e83af
Copy
Close
Hashes for numpy-1.19.3-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Hashes for numpy-1.19.3-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm
Hash digest
SHA256
9a0669787ba8c9d3bb5de5d9429208882fb47764aa79123af25c5edc4f5966b9
Copy
MD5
ed5bd59a064fe5b95699c222dc7a4638
Copy
BLAKE2-256
354895b579f3a19846adeb55b6ed4571f2bd6b27ec255ca147c15ed03087cde2
Copy
Close
Hashes for numpy-1.19.3.zip
Hashes for numpy-1.19.3.zip
Algorithm
Hash digest
SHA256
35bf5316af8dc7c7db1ad45bec603e5fb28671beb98ebd1d65e8059efcfd3b72
Copy
MD5
7f014f9964987b59083c8dc4d158d45a
Copy
BLAKE2-256
cbc07b3d69e6ee68bc54c97ba51f8c3c3e43ff1dbc7bd97347cc19a1f944e60a
Copy
总投资1478亿!三星表示停止LCD 面板,转换为QD-OLED近年来中国面板厂商在LCD市场步步进逼,激烈的价格战已向上延烧至高利润的大尺寸面板,导致大尺寸面板价格持续下滑。与此同时,中国面板厂商在OLED领域也取得了一些突破。相比之下,三星早在2015年就决定不再为平板电脑和智能手机生产LCD屏幕,全面转向了OLED,同时,相关LCD产线和设备也开始对外转让。仅保留了针对电视的大尺寸LCD...
一、怎么安装PCIE-9014卡1.拧开锁住机箱盖的两个螺丝;2.拧下四颗固定机箱挡板的螺丝,去下机箱挡板;3.去掉需要插PCIE-9014卡插槽对应的螺丝;4.组装PCIE-9014卡,注意组装时手别碰触到PCIE-9014卡上的芯片;5.将PCIE-9014卡插入工控机中,并锁上螺丝,注意安装时手别碰触到PCIE-9014卡上的芯片;二、怎么安装PCIE-9014卡1.拧开机箱上的两颗固定机箱盖...
Less-15方法一:Post传参,先用burp suite抓包判断闭合方式:uname=’ or 1=1 #&passwd=&submit=Submit 显示登录成功,闭合方式为’’uname=’) or 1=1 #&passwd=&submit=Submit 添加符号后没有报错信息,直接返回登录失败,说明这题只有正确或者错误两种返回,可以使用布尔盲注进行注入。Substr(a,b,c):从位置b开始截取a字符中的前c个字符判断当前数据库名长度:u
本文转载自『流子的博客!』http://liuzi.roboticfan.com更多精彩内容,欢迎访问流子的博客!1推荐大家知道在windows平台上SWT有一种更快更美更好的优势,但是现在的许多控件,比如jfreechart是基于Swing的,这就有个需要把SWT-AWT桥接起来的问题.前几天就遇到了这个问题,就是要在一个Eclipse里显示JFreeChart的图形,因为后者是基于Java...
文章目录编程环境:背景铺垫:使用互斥量(锁) Mutex:改写例子,使用互斥量(锁)实例:下载地址:简 述: 在 Linux 中,使用互斥量(互斥锁????) Mutex 来给保证多线程 ,在访问公共变量的时候能够 “串行” 代码。从而使得多线程正确的同步执行。关于多线程创建和使用可以参考前面几篇的文章,争取早日把 Linux 系统篇之 系统编程给发布完系列的教程。PS:好几天没有接着学习 Li...
本文章使用layui框架,提交表单,如果使用其他的框架请右上角!首先设置弹出层如下图:layer.open({ type : 2, title : "信息編輯", area : [ '45%', '35%' ], shade : 0, sha...
前言许彦峰:江湖人称插件小王子,在Cocos Creator扩展商店上架近十款余款插件。而且插件小王子的大部分插件是免费分享、提供源码,真乃Cocos社区的一名活雷锋。今...
解决方法: The div() method is not used in Python 3.x. Implement truediv() instead.def gcd(a, b): # 化简 if b == 0: return a return gcd(b, a % b)class Rational(object): def __init__(s...
在前面提到的数字签名和公钥密码都需要使用公钥,如何判断自己手中的公钥是否合法?这时就需要使用对公钥合法性证明的技术——证书目录证书介绍:公钥证书(PKC):证书使用场景:公钥基础设施PKI组成要素:认证机构的工作:对证书的攻击1)在公钥注册前进行攻击2)注册相似人名进行攻击3)窃取认证机构的私钥进行攻击4)伪装成认证机构进行攻击5)通过CRL进行...
关键字:flume、hdfs、sink、配置参数滚动条件与输出hdfs的文件的压缩配置Flume中的HDFS Sink应该是非常常用的,其中的配置参数也比较多,在这里记录备忘一下。channel type hdfs path写入hdfs的路径,需要包含文件系统标识,比如:hdfs://namenode/flume/webdata/可以使用flume提供的日期及%{host...
使用命令:docker inspect <容器id>在返回的json数据中,查找 Path 和HostPath这两个参数:其中,Path 为容器的运行位置(指令),HostPath 为容器的所在位置。