莫比乌斯反演笔记-程序员宅基地

莫比乌斯反演

话说之前对莫比乌斯感兴趣还是在17年拜年祭的时候……

然而现在看到莫比乌斯反演就心痛QAQ

莫比乌斯反演又称懵逼钨丝繁衍,其实就是两个式子:

设函数$f(n)$,$g(n)$是数论函数,且满足:

$$f(n)=\sum\limits_{d|n}g(d)$$

则有莫比乌斯反演

$$g(n)=\sum\limits_{d|n}μ(d)f(\frac{n}{d})$$

或者若满足:

$$f(n)=\sum\limits_{n|d}g(d)$$

则有:

$$g(n)=\sum\limits_{n|d}μ(\frac{d}{n})f(d)(d\le maxd)$$

其中$μ$为莫比乌斯函数,设$n=p_{1}^{k_{1}}\cdot p_{2}^{k_{2}}\cdot\cdots\cdot p_{m}^{k_{m}}$($p$为质数)

则$μ(n)$定义如下:

$μ(n)=
\begin{cases}
1& n=1 \\
(-1)^{m}& \prod\limits_{i=1}^{m}k_{i}=1 \\
0& otherwise(k_{i}>1) 
\end{cases}$

$μ(n)$有一些非常妙的性质,下面举例说明一下:

性质一:$\mu(n)$是积性函数,即对于正整数$n$,$m$,当$n$和$m$互质时,都有$f(nm)=f(n)f(m)$;

证明:省略,可以考虑从因子分解方向证

性质二:

$\sum\limits_{d|n}\mu(d)=
\begin{cases}
1& n=1 \\
0& n\not=1
\end{cases}$

证明:当$n=1$时结论显然

当$n\not=1$时,将$n$分解为$p_{1}^{k_{1}}\cdot p_{2}^{k_{2}}\cdot\cdots\cdot p_{m}^{k_{m}}$

此时只需要考虑次数为1的质因子,易得其中质因数个数为$r$的因子有$C_{m}^{r}$个,那么原式可化为:

$\sum\limits_{d|n}\mu(d)=C_{m}^{0}-C_{m}^{1}+C_{m}^{2}-\cdots+(-1)^{m}C_{m}^{m}=\sum\limits_{i=0}^{m}(-1)^{i}C_{m}^{i}$

根据二项式定理得

$(x+y)^{m}=\sum\limits_{i=0}^{m}C_{m}^{i}x^{i}y^{n-i}$

将$x=-1,y=1$代入得$\sum\limits_{i=0}^{m}(-1)^{i}C_{m}^{i}=0$

证毕.

现在来证明莫比乌斯反演,网上很多证明都很简略,看得我云里雾里的,这里我就写的详细一点。

求证:当$f(n)=\sum\limits_{d|n}g(d)$时,$g(n)=\sum\limits_{d|n}\mu(d)f(\frac{n}{d})$

证明:由$f$,$g$定义可得$\sum\limits_{d|n}\mu(d)f(\frac{n}{d})=\sum\limits_{d|n}\mu(d)\sum\limits_{k|\frac{n}{d}}g(k)$

变式得$\sum\limits_{d|n}\mu(d)\sum\limits_{k|\frac{n}{d}}g(k)=\sum\limits_{k|n}g(k)\sum\limits_{d|\frac{n}{k}}\mu(d)$

又因为当$n>1$时$\sum\limits_{d|n}\mu(d)=0$

所以当且仅当$k=n$时和式的值为$g(n)$,否则为$0$,最终结果也是$g(n)$

证毕.

另一类证明类似,只写结论:

当$f(n)=\sum\limits_{n|d}g(d)$时$g(n)=\sum\limits_{n|d}μ(\frac{d}{n})f(d)$

所以,没有了?

下面我们来看实现和应用。。。这东西看起来就俩式子,但是非常非常有用!

莫比乌斯反演实现与应用

1.线性筛求莫比乌斯函数

我们莫比乌斯函数是积性函数,那么就可以用线性筛来求。

具体实现就是在素数线性筛上加了几句,首先,素数的莫比乌斯函数是$-1$,当一个数的某个质因子指数大于一时就筛成0。注意实现时如果一个数的最小质因子指数大于$1$才会直接被筛为0,否则会用$\mu(x)=-\mu(i)$来完成。每个数被它的最小质因子筛去,所以是线性的。

代码:

 1 int miu[100001],pri[100001],tot=0;
 2 bool ntp[100001];
 3 void getmiu(){
 4     memset(ntp,0,sizeof(ntp));
 5     memset(miu,0,sizeof(miu));
 6     miu[1]=1;
 7     for(int i=2;i<=100000;i++){
 8         if(!ntp[i]){
 9             pri[++tot]=i;
10             miu[i]=-1;
11         }
12         for(int j=1;j<=tot&&pri[j]*i<=100000;j++){
13             ntp[pri[j]*i]=true;
14             if(i%pri[j]==0){
15                 miu[i*pri[j]]=0;
16                 break;
17             }
18             miu[i*pri[j]]=-miu[i];
19         }
20     }
21 } 

2.求解一系列有关gcd(是最小公因数不是……)的问题

例题一:BZOJ2301&&HDU1695(这个要求x,y和y,x不重复的)

题意:$n$次询问,每次求有多少对$(x,y)$满足$a\le x\le b$且$c\le y\le d$且$gcd(x,y)=k$。

$n,a,b,c,d$都是$50000$级别。

容斥一下(不会怎么容斥的请Alt+F4百度一下)每次拆成四个询问,都是形如有多少对$(x,y)$满足$1\le x\le n$且$1\le y\le m$且$gcd(x,y)=k$(默认$n\le m$否则交换)。

这样的询问等价于询问有多少对$(x,y)$满足$1\le x\le \lfloor\frac{n}{k}\rfloor$且$1\le y\le \lfloor\frac{m}{k}\rfloor$且$x,y$互质

直接做?4*50000^3=???

考虑莫比乌斯反演,令$g(i)$等于满足$1\le x\le n$且$1\le y\le m$且$gcd(x,y)=i$的数对$(x,y)$个数,$f(i)$等于满足$1\le x\le n$且$1\le y\le m$且$i|gcd(x,y)$的数对$(x,y)$个数。

易得$f(i)=\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{i}\rfloor$

反演一下得$g(i)=\sum\limits_{i|d}\mu(\frac{d}{i})f(d)=\sum\limits_{i|d}\mu(\frac{d}{i})\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor$

枚举每个$k$的倍数,就可以$O(n)$处理每个询问了。

然而50000^2=???

继续考虑优化

观察式子$\lfloor\frac{n}{d}\rfloor$,可(da)以(dan)证(cai)明(ce)发现它最多只有$O(\sqrt{n})$种取值。

具体证明如下:

考虑$1\le d\le \sqrt{n}$的情况,此时$\lfloor\frac{n}{d}\rfloor$最多只有$\sqrt{n}$种取值;

剩余当$\sqrt{n}\le d\le n$时,有$\lfloor\frac{n}{d}\rfloor<\sqrt{n}$,因此取值也不超过$\sqrt{n}$种;

综上,$\lfloor\frac{n}{d}\rfloor$最多只有$O(\sqrt{n})$种取值。

即$\lfloor\frac{n}{d}\rfloor$取值连续的段最多只有$\sqrt{n}+\sqrt{m}$段。

所以就可以$O(\sqrt{n}+\sqrt{m})$时间内枚举,然后就……做完了?

具体实现就是分块维护一个$\mu$的前缀和。

并且非常好写!

完整代码:

 

 1 #include<iostream>
 2 #include<cstring>
 3 #include<cstdio>
 4 #include<cmath>
 5 using namespace std;
 6 typedef long long ll;
 7 int t,a,b,c,d,k,pre[100001],miu[100001],pri[100001],tot=0;
 8 bool ntp[100001];
 9 void getmiu(){
10     memset(ntp,0,sizeof(ntp));
11     memset(miu,0,sizeof(miu));
12     miu[1]=1;
13     for(int i=2;i<=100000;i++){
14         if(!ntp[i]){
15             pri[++tot]=i;
16             miu[i]=-1;
17         }
18         for(int j=1;j<=tot&&pri[j]*i<=100000;j++){
19             ntp[pri[j]*i]=true;
20             if(i%pri[j]==0){
21                 miu[i*pri[j]]=0;
22                 break;
23             }
24             miu[i*pri[j]]=-miu[i];
25         }
26     }
27 }
28 ll work(int n,int m){
29     ll ans=0;
30     int last=0;
31     if(n>m)swap(n,m);
32     for(int i=1;i<=n;i=last+1){
33         last=min(n/(n/i),m/(m/i));
34         ans+=(ll)(pre[last]-pre[i-1])*(n/i)*(m/i);
35     }
36     return ans;
37 }
38 int main(){
39     getmiu();
40     pre[0]=0;
41     for(int i=1;i<=100000;i++)pre[i]=pre[i-1]+miu[i];
42     scanf("%d",&t);
43     for(int i=1;i<=t;i++){
44         scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
45         a--,c--;
46         if(!k)printf("0\n");
47         else printf("%lld\n",work(b/k,d/k)-work(a/k,d/k)-work(b/k,c/k)+work(a/k,c/k));
48     }
49     return 0;
50 }

 例题二:BZOJ2820

题目大意:求有多少对$(x,y)$满足$1\le x\le n$且$1\le y\le m$且$gcd(x,y)=$质数

定义$f(i)$,$g(i)$同上,再枚举质数,有

$ans=\sum\limits_{p}^{n}(\sum\limits_{d=1}^{\frac{n}{p}}\mu(d)\lfloor\frac{n}{pd}\rfloor\lfloor\frac{m}{pd}\rfloor)$

直接做?复杂度大概是$O(\frac{n\sqrt{n}}{logn})$,不是很行

变一下式,设$t=pd$,有

$ans=\sum\limits_{t=1}^{n}\lfloor\frac{n}{t}\rfloor\lfloor\frac{m}{t}\rfloor(\sum\limits_{p|t}\mu(\frac{t}{p}))$

预处理一下$\sum\limits_{p|t}\mu(\frac{t}{p})$,剩下的分块前缀和就和之前一模一样了。

如何预处理?

考虑线性筛,$f[i*prime[j]]$

$prime[j]|i$时显然$f[i]=\mu(i)$

否则考虑$\mu(i*prime[j]/p_{1})$,当$prime[j]=p_{1}$时为$\mu(i)$,否则所有和为$-f[i]$,因此总和即为$\mu(i)-f[i]$。

代码:

 

 1 #include<iostream>
 2 #include<cstring>
 3 #include<cstdio>
 4 #include<cmath>
 5 using namespace std;
 6 typedef long long ll;
 7 int t,a,b,pre[10000001],miu[10000001],pri[10000001],f[10000001],tot=0;
 8 bool ntp[10000001];
 9 void getmiu(){
10     memset(ntp,0,sizeof(ntp));
11     memset(miu,0,sizeof(miu));
12     miu[1]=1;
13     for(int i=2;i<=10000000;i++){
14         if(!ntp[i]){
15             pri[++tot]=i;
16             miu[i]=-1;
17             f[i]=1;
18         }
19         for(int j=1;j<=tot&&pri[j]*i<=10000000;j++){
20             ntp[pri[j]*i]=true;
21             if(i%pri[j]==0){
22                 miu[i*pri[j]]=0;
23                 f[i*pri[j]]=miu[i];
24                 break;
25             }
26             miu[i*pri[j]]=-miu[i];
27             f[i*pri[j]]=miu[i]-f[i];
28         }
29     }
30 }
31 ll work(int n,int m){
32     ll ans=0;
33     int last=0;
34     if(n>m)swap(n,m);
35     for(int i=1;i<=n;i=last+1){
36         last=min(n/(n/i),m/(m/i));
37         ans+=(ll)(pre[last]-pre[i-1])*(n/i)*(m/i);
38     }
39     return ans;
40 }
41 int main(){
42     getmiu();
43     pre[0]=0;
44     for(int i=1;i<=10000000;i++)pre[i]=pre[i-1]+f[i];
45     scanf("%d",&t);
46     for(int i=1;i<=t;i++){
47         scanf("%d%d",&a,&b);
48         printf("%lld\n",work(a,b));
49     }
50     return 0;
51 }

 

 

 

例题三:GDOI2018Day2T1谈笑风生

题目过于暴力不予显示(顾名思义)

题目大意:n个点m条边的无向图,边权由点权计算,其中可以花费p能量把每条边权减少p,求最少要花费多少能量才能使1~n的最短路小于等于t;

其中边权计算式为$w=\sum\limits_{i=1}^{num[u]}\sum\limits_{j=1}^{num[v]}(i+j)[gcd(i,j)==1]$

待填坑……

3.还有吗?那我就不会了

总结

不存在的

就是背好两个式子吧……

同时推荐一些很好的课件(同时也是我学习的):Orz PoPoQQQSengxian's Blog

转载于:https://www.cnblogs.com/dcdcbigbig/p/8981572.html

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_30600503/article/details/95036517

智能推荐

使用nginx解决浏览器跨域问题_nginx不停的xhr-程序员宅基地

文章浏览阅读1k次。通过使用ajax方法跨域请求是浏览器所不允许的,浏览器出于安全考虑是禁止的。警告信息如下:不过jQuery对跨域问题也有解决方案,使用jsonp的方式解决,方法如下:$.ajax({ async:false, url: 'http://www.mysite.com/demo.do', // 跨域URL ty..._nginx不停的xhr

在 Oracle 中配置 extproc 以访问 ST_Geometry-程序员宅基地

文章浏览阅读2k次。关于在 Oracle 中配置 extproc 以访问 ST_Geometry,也就是我们所说的 使用空间SQL 的方法,官方文档链接如下。http://desktop.arcgis.com/zh-cn/arcmap/latest/manage-data/gdbs-in-oracle/configure-oracle-extproc.htm其实简单总结一下,主要就分为以下几个步骤。..._extproc

Linux C++ gbk转为utf-8_linux c++ gbk->utf8-程序员宅基地

文章浏览阅读1.5w次。linux下没有上面的两个函数,需要使用函数 mbstowcs和wcstombsmbstowcs将多字节编码转换为宽字节编码wcstombs将宽字节编码转换为多字节编码这两个函数,转换过程中受到系统编码类型的影响,需要通过设置来设定转换前和转换后的编码类型。通过函数setlocale进行系统编码的设置。linux下输入命名locale -a查看系统支持的编码_linux c++ gbk->utf8

IMP-00009: 导出文件异常结束-程序员宅基地

文章浏览阅读750次。今天准备从生产库向测试库进行数据导入,结果在imp导入的时候遇到“ IMP-00009:导出文件异常结束” 错误,google一下,发现可能有如下原因导致imp的数据太大,没有写buffer和commit两个数据库字符集不同从低版本exp的dmp文件,向高版本imp导出的dmp文件出错传输dmp文件时,文件损坏解决办法:imp时指定..._imp-00009导出文件异常结束

python程序员需要深入掌握的技能_Python用数据说明程序员需要掌握的技能-程序员宅基地

文章浏览阅读143次。当下是一个大数据的时代,各个行业都离不开数据的支持。因此,网络爬虫就应运而生。网络爬虫当下最为火热的是Python,Python开发爬虫相对简单,而且功能库相当完善,力压众多开发语言。本次教程我们爬取前程无忧的招聘信息来分析Python程序员需要掌握那些编程技术。首先在谷歌浏览器打开前程无忧的首页,按F12打开浏览器的开发者工具。浏览器开发者工具是用于捕捉网站的请求信息,通过分析请求信息可以了解请..._初级python程序员能力要求

Spring @Service生成bean名称的规则(当类的名字是以两个或以上的大写字母开头的话,bean的名字会与类名保持一致)_@service beanname-程序员宅基地

文章浏览阅读7.6k次,点赞2次,收藏6次。@Service标注的bean,类名:ABDemoService查看源码后发现,原来是经过一个特殊处理:当类的名字是以两个或以上的大写字母开头的话,bean的名字会与类名保持一致public class AnnotationBeanNameGenerator implements BeanNameGenerator { private static final String C..._@service beanname

随便推点

二叉树的各种创建方法_二叉树的建立-程序员宅基地

文章浏览阅读6.9w次,点赞73次,收藏463次。1.前序创建#include&lt;stdio.h&gt;#include&lt;string.h&gt;#include&lt;stdlib.h&gt;#include&lt;malloc.h&gt;#include&lt;iostream&gt;#include&lt;stack&gt;#include&lt;queue&gt;using namespace std;typed_二叉树的建立

解决asp.net导出excel时中文文件名乱码_asp.net utf8 导出中文字符乱码-程序员宅基地

文章浏览阅读7.1k次。在Asp.net上使用Excel导出功能,如果文件名出现中文,便会以乱码视之。 解决方法: fileName = HttpUtility.UrlEncode(fileName, System.Text.Encoding.UTF8);_asp.net utf8 导出中文字符乱码

笔记-编译原理-实验一-词法分析器设计_对pl/0作以下修改扩充。增加单词-程序员宅基地

文章浏览阅读2.1k次,点赞4次,收藏23次。第一次实验 词法分析实验报告设计思想词法分析的主要任务是根据文法的词汇表以及对应约定的编码进行一定的识别,找出文件中所有的合法的单词,并给出一定的信息作为最后的结果,用于后续语法分析程序的使用;本实验针对 PL/0 语言 的文法、词汇表编写一个词法分析程序,对于每个单词根据词汇表输出: (单词种类, 单词的值) 二元对。词汇表:种别编码单词符号助记符0beginb..._对pl/0作以下修改扩充。增加单词

android adb shell 权限,android adb shell权限被拒绝-程序员宅基地

文章浏览阅读773次。我在使用adb.exe时遇到了麻烦.我想使用与bash相同的adb.exe shell提示符,所以我决定更改默认的bash二进制文件(当然二进制文件是交叉编译的,一切都很完美)更改bash二进制文件遵循以下顺序> adb remount> adb push bash / system / bin /> adb shell> cd / system / bin> chm..._adb shell mv 权限

投影仪-相机标定_相机-投影仪标定-程序员宅基地

文章浏览阅读6.8k次,点赞12次,收藏125次。1. 单目相机标定引言相机标定已经研究多年,标定的算法可以分为基于摄影测量的标定和自标定。其中,应用最为广泛的还是张正友标定法。这是一种简单灵活、高鲁棒性、低成本的相机标定算法。仅需要一台相机和一块平面标定板构建相机标定系统,在标定过程中,相机拍摄多个角度下(至少两个角度,推荐10~20个角度)的标定板图像(相机和标定板都可以移动),即可对相机的内外参数进行标定。下面介绍张氏标定法(以下也这么称呼)的原理。原理相机模型和单应矩阵相机标定,就是对相机的内外参数进行计算的过程,从而得到物体到图像的投影_相机-投影仪标定

Wayland架构、渲染、硬件支持-程序员宅基地

文章浏览阅读2.2k次。文章目录Wayland 架构Wayland 渲染Wayland的 硬件支持简 述: 翻译一篇关于和 wayland 有关的技术文章, 其英文标题为Wayland Architecture .Wayland 架构若是想要更好的理解 Wayland 架构及其与 X (X11 or X Window System) 结构;一种很好的方法是将事件从输入设备就开始跟踪, 查看期间所有的屏幕上出现的变化。这就是我们现在对 X 的理解。 内核是从一个输入设备中获取一个事件,并通过 evdev 输入_wayland

推荐文章

热门文章

相关标签