对PatchGAN的感知域(receptive_field)理解-程序员宅基地

技术标签: 人工智能  

for basic discriminator of GANs

判别器用于感知生成器产生的合成图片和ground-truth的差异,并旨在实现区分出fake or real;

同时,判别器的输出也是经过一系列的conv后得到的一个标量值,一般使这个值激活在0~1之间;

但是,这样的结果存在着一些问题:

  1.输出的结果显然是一个整体图片的加权值,无法体现局部图像的特征,对于精度要求高的的图像迁移等任务比较困难。

for Patch-based discriminator of GANs

PatchGAN的思路是最后的输出不是一个标量值,而是一个$N*N$的矩阵$X$,其实$X_{ij}$表示patch $ij$是fake or real. 

关键点就是:在$X$上的一个神经元$X_{ij}$可以表示一块输入patch,这个神经元就对这块patch的像素敏感,这块patch 就是 输出$X_{ij}$的感知域(receptive field).

 

1.这样方法 通过每个patch 进行差别的判别, 实现了局部图像特征的提取和表征, 有利于实现更为高分辨率的图像生产;同时, 对最后的 分类特征图进行平均后, 也能够实现相比

2.单标量输出的更为精确的整体差异表示,相当于对整体进行加权求和平均,对于某些特征差异大的局部图像特征, 能够实现比basic D 更为合理的 损失表示。

3.这种机制,将局部图像特征和整体图像特性相融合。

Mathematical:

有个解决办法就是将图像裁剪成多个重叠的patches,分别进行判别器的差异识别,并对得到的结果进行平均,但是这样存在大的运算消耗。

Obviously,卷积神经网络的强大之处在于,它们能以相同的方式独立地处理每个图像块,所以在最后的实际过程中,得到的输出矩阵的每一神经元相当于就是在执行每个patch的单独判断的结果,这样的结果具有高效的运算效果。

The size of receptive field:

堆叠不同层的convnets, 最后输出矩阵的单个神经元的表征的感知域的大小显然不一样;感知域越大,这意味着它应该学习距离更远的对象之间的关系

empirical, 层数越深, 能够感知的patch的尺寸也越大,但是这样会付出更多的计算成本和时间消耗,所以需要通过traceback:

function receptive_field_sizes()


% compute input size from a given output size
f = @(output_size, ksize, stride) (output_size - 1) * stride + ksize;


%% n=1 discriminator

% fix the output size to 1 and derive the receptive field in the input
out = ...
f(f(f(1, 4, 1), ...   % conv2 -> conv3
             4, 1), ...   % conv1 -> conv2
             4, 2);       % input -> conv1

fprintf('n=1 discriminator receptive field size: %d\n', out);


%% n=2 discriminator

% fix the output size to 1 and derive the receptive field in the input
out = ...
f(f(f(f(1, 4, 1), ...   % conv3 -> conv4
             4, 1), ...   % conv2 -> conv3
             4, 2), ...   % conv1 -> conv2
             4, 2);       % input -> conv1

fprintf('n=2 discriminator receptive field size: %d\n', out);


%% n=3 discriminator

% fix the output size to 1 and derive the receptive field in the input
out = ...
f(f(f(f(f(1, 4, 1), ...   % conv4 -> conv5
             4, 1), ...   % conv3 -> conv4
             4, 2), ...   % conv2 -> conv3
             4, 2), ...   % conv1 -> conv2
             4, 2);       % input -> conv1

fprintf('n=3 discriminator receptive field size: %d\n', out);


%% n=4 discriminator

% fix the output size to 1 and derive the receptive field in the input
out = ...
f(f(f(f(f(f(1, 4, 1), ...   % conv5 -> conv6
             4, 1), ...   % conv4 -> conv5
             4, 2), ...   % conv3 -> conv4
             4, 2), ...   % conv2 -> conv3
             4, 2), ...   % conv1 -> conv2
             4, 2);       % input -> conv1

fprintf('n=4 discriminator receptive field size: %d\n', out);


%% n=5 discriminator

% fix the output size to 1 and derive the receptive field in the input
out = ...
f(f(f(f(f(f(f(1, 4, 1), ...   % conv6 -> conv7
             4, 1), ...   % conv5 -> conv6
             4, 2), ...   % conv4 -> conv5
             4, 2), ...   % conv3 -> conv4
             4, 2), ...   % conv2 -> conv3
             4, 2), ...   % conv1 -> conv2
             4, 2);       % input -> conv1

fprintf('n=5 discriminator receptive field size: %d\n', out);

实际模型搭建

显然,是需要堆积多个convnets即可实现PatchGAN的判别器, PatchGAN更多的将它理解为一种机制mechanism,其实整个模型就是一个FCN结构

对于不同的感知域,肯定在D中表征为有不同的convnet层, torch:

function defineD_n_layers(input_nc, output_nc, ndf, n_layers)
    if n_layers==0 then
        return defineD_pixelGAN(input_nc, output_nc, ndf)
    else
    
        local netD = nn.Sequential()
        
        -- input is (nc) x 256 x 256
        netD:add(nn.SpatialConvolution(input_nc+output_nc, ndf, 4, 4, 2, 2, 1, 1))
        
        module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])
        
        netD:add(nn.LeakyReLU(0.2, true))
        
        local nf_mult = 1
        local nf_mult_prev = 1   
        for n = 1, n_layers-1 do 
            nf_mult_prev = nf_mult
            nf_mult = math.min(2^n,8)
            netD:add(nn.SpatialConvolution(ndf * nf_mult_prev, ndf * nf_mult, 4, 4, 2, 2, 1, 1))
            netD:add(nn.SpatialBatchNormalization(ndf * nf_mult)):add(nn.LeakyReLU(0.2, true))
        end
        
        -- state size: (ndf*M) x N x N
        nf_mult_prev = nf_mult
        nf_mult = math.min(2^n_layers,8)
        netD:add(nn.SpatialConvolution(ndf * nf_mult_prev, ndf * nf_mult, 4, 4, 1, 1, 1, 1))
        netD:add(nn.SpatialBatchNormalization(ndf * nf_mult)):add(nn.LeakyReLU(0.2, true))
        -- state size: (ndf*M*2) x (N-1) x (N-1)
        netD:add(nn.SpatialConvolution(ndf * nf_mult, 1, 4, 4, 1, 1, 1, 1))
        -- state size: 1 x (N-2) x (N-2)
        
        netD:add(nn.Sigmoid())
        -- state size: 1 x (N-2) x (N-2)
        
        return netD
    end
end9

 

一些思考 future works

1.PatchGAN的整个机制的核心在于对 G网络结果的优化,优化了类似U-net的结构(encoder-decoder的架构),使得低阶信息跨越bottleneck,让更多的低阶信息得以交换,

并让G的训练有如同  Res-block般的平缓梯度,一定程度上减缓了梯度消失, 我们知道Resnet较为好的解决了多层convnet堆叠后的训练困难的问题,其类似于放大器的结构,让训练

更为的有效。

 

2.由于patches的重叠性和局部特征性,对于不同的任务, patches之间的局部特征的相关性肯定存在差异, 所以对于感知域的尺寸确定需要有差异性和动态性,才能实现较为好的性能。

 

3.对于G 来说, 其解码过程其实使用的是微步幅卷积操作或叫做反卷积操作,但是反卷积操作其实对于图像的产生是存在着争议性的,改善和提高这个部分,具有一点的前景, 可以采用

多个的feature map进行重叠作为输入的操作, 得到一个多层特征图, 尝试直接使用一个下采样卷积作为一个生成器。

 

4.对于CGANs 机制的引入, 其实是使得 GAN的训练更加稳定, 进行有约束的执行generative 任务, 进行加 buff的 判别的任务。

 

转载于:https://www.cnblogs.com/ChenKe-cheng/p/11207998.html

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_30362801/article/details/101444624

智能推荐

oracle 12c 集群安装后的检查_12c查看crs状态-程序员宅基地

文章浏览阅读1.6k次。安装配置gi、安装数据库软件、dbca建库见下:http://blog.csdn.net/kadwf123/article/details/784299611、检查集群节点及状态:[root@rac2 ~]# olsnodes -srac1 Activerac2 Activerac3 Activerac4 Active[root@rac2 ~]_12c查看crs状态

解决jupyter notebook无法找到虚拟环境的问题_jupyter没有pytorch环境-程序员宅基地

文章浏览阅读1.3w次,点赞45次,收藏99次。我个人用的是anaconda3的一个python集成环境,自带jupyter notebook,但在我打开jupyter notebook界面后,却找不到对应的虚拟环境,原来是jupyter notebook只是通用于下载anaconda时自带的环境,其他环境要想使用必须手动下载一些库:1.首先进入到自己创建的虚拟环境(pytorch是虚拟环境的名字)activate pytorch2.在该环境下下载这个库conda install ipykernelconda install nb__jupyter没有pytorch环境

国内安装scoop的保姆教程_scoop-cn-程序员宅基地

文章浏览阅读5.2k次,点赞19次,收藏28次。选择scoop纯属意外,也是无奈,因为电脑用户被锁了管理员权限,所有exe安装程序都无法安装,只可以用绿色软件,最后被我发现scoop,省去了到处下载XXX绿色版的烦恼,当然scoop里需要管理员权限的软件也跟我无缘了(譬如everything)。推荐添加dorado这个bucket镜像,里面很多中文软件,但是部分国外的软件下载地址在github,可能无法下载。以上两个是官方bucket的国内镜像,所有软件建议优先从这里下载。上面可以看到很多bucket以及软件数。如果官网登陆不了可以试一下以下方式。_scoop-cn

Element ui colorpicker在Vue中的使用_vue el-color-picker-程序员宅基地

文章浏览阅读4.5k次,点赞2次,收藏3次。首先要有一个color-picker组件 <el-color-picker v-model="headcolor"></el-color-picker>在data里面data() { return {headcolor: ’ #278add ’ //这里可以选择一个默认的颜色} }然后在你想要改变颜色的地方用v-bind绑定就好了,例如:这里的:sty..._vue el-color-picker

迅为iTOP-4412精英版之烧写内核移植后的镜像_exynos 4412 刷机-程序员宅基地

文章浏览阅读640次。基于芯片日益增长的问题,所以内核开发者们引入了新的方法,就是在内核中只保留函数,而数据则不包含,由用户(应用程序员)自己把数据按照规定的格式编写,并放在约定的地方,为了不占用过多的内存,还要求数据以根精简的方式编写。boot启动时,传参给内核,告诉内核设备树文件和kernel的位置,内核启动时根据地址去找到设备树文件,再利用专用的编译器去反编译dtb文件,将dtb还原成数据结构,以供驱动的函数去调用。firmware是三星的一个固件的设备信息,因为找不到固件,所以内核启动不成功。_exynos 4412 刷机

Linux系统配置jdk_linux配置jdk-程序员宅基地

文章浏览阅读2w次,点赞24次,收藏42次。Linux系统配置jdkLinux学习教程,Linux入门教程(超详细)_linux配置jdk

随便推点

matlab(4):特殊符号的输入_matlab微米怎么输入-程序员宅基地

文章浏览阅读3.3k次,点赞5次,收藏19次。xlabel('\delta');ylabel('AUC');具体符号的对照表参照下图:_matlab微米怎么输入

C语言程序设计-文件(打开与关闭、顺序、二进制读写)-程序员宅基地

文章浏览阅读119次。顺序读写指的是按照文件中数据的顺序进行读取或写入。对于文本文件,可以使用fgets、fputs、fscanf、fprintf等函数进行顺序读写。在C语言中,对文件的操作通常涉及文件的打开、读写以及关闭。文件的打开使用fopen函数,而关闭则使用fclose函数。在C语言中,可以使用fread和fwrite函数进行二进制读写。‍ Biaoge 于2024-03-09 23:51发布 阅读量:7 ️文章类型:【 C语言程序设计 】在C语言中,用于打开文件的函数是____,用于关闭文件的函数是____。

Touchdesigner自学笔记之三_touchdesigner怎么让一个模型跟着鼠标移动-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏13次。跟随鼠标移动的粒子以grid(SOP)为partical(SOP)的资源模板,调整后连接【Geo组合+point spirit(MAT)】,在连接【feedback组合】适当调整。影响粒子动态的节点【metaball(SOP)+force(SOP)】添加mouse in(CHOP)鼠标位置到metaball的坐标,实现鼠标影响。..._touchdesigner怎么让一个模型跟着鼠标移动

【附源码】基于java的校园停车场管理系统的设计与实现61m0e9计算机毕设SSM_基于java技术的停车场管理系统实现与设计-程序员宅基地

文章浏览阅读178次。项目运行环境配置:Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:Springboot + mybatis + Maven +mysql5.7或8.0+html+css+js等等组成,B/S模式 + Maven管理等等。环境需要1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。_基于java技术的停车场管理系统实现与设计

Android系统播放器MediaPlayer源码分析_android多媒体播放源码分析 时序图-程序员宅基地

文章浏览阅读3.5k次。前言对于MediaPlayer播放器的源码分析内容相对来说比较多,会从Java-&amp;amp;gt;Jni-&amp;amp;gt;C/C++慢慢分析,后面会慢慢更新。另外,博客只作为自己学习记录的一种方式,对于其他的不过多的评论。MediaPlayerDemopublic class MainActivity extends AppCompatActivity implements SurfaceHolder.Cal..._android多媒体播放源码分析 时序图

java 数据结构与算法 ——快速排序法-程序员宅基地

文章浏览阅读2.4k次,点赞41次,收藏13次。java 数据结构与算法 ——快速排序法_快速排序法