sklearn-第六节(PCA)_pca sklearn 方法-程序员宅基地

技术标签: python  机器学习  sklearn  

1、主成分分析法(PCA)思想及原理

1.1什么是主成分分析法

PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法(非监督的机器学习方法)。

其最主要的用途在于“降维”,通过析取主成分显出的最大的个别差异,发现更便于人类理解的特征。也可以用来削减回归分析和聚类分析中变量的数目。

1.2为什么要做主成分分析

在很多场景中需要对多变量数据进行观测,在一定程度上增加了数据采集的工作量。更重要的是:多变量之间可能存在相关性,从而增加了问题分析的复杂性。

如果对每个指标进行单独分析,其分析结果往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论。

因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。由于各变量之间存在一定的相关关系,因此可以考虑将关系紧密的变量变成尽可能少的新变量,使这些新变量是两两不相关的,那么就可以用较少的综合指标分别代表存在于各个变量中的各类信息。主成分分析与因子分析就属于这类降维算法。

1.3PCA的大致流程

PCA 所要做的工作,简单点说,就是对原始的空间中顺序地找一组相互正交的坐标轴,第一个轴是使得方差最大的,第二个轴是在与第一个轴正交的平面中使得方差最大的,第三个轴是在与第1、2个轴正交的平面中方差最大的,这样假设在 N 维空间中,我们可以找到 N 个这样的坐标轴,我们取前 r 个去近似这个空间,这样就从一个 N 维的空间压缩到 r 维的空间了,但是我们选择的 r 个坐标轴能够使得空间的压缩使得数据的损失最小。

因此,关键点就在于:如何找到新的投影方向使得原始数据的“信息量”损失最少

1.4样本信息量的衡量

样本的“信息量”指的是样本在特征方向上投影的方差。方差越大,则样本在该特征上的差异就越大,因此该特征就越重要。以《机器学习实战》上的图说明,在分类问题里,样本的方差越大,越容易将不同类别的样本区分开。

信息量

2.算法实现

2.1引入相关库

# 添加目录到系统路径方便导入模块,该项目的根目录为".../machine-learning-toy-code"
import sys
from pathlib import Path
curr_path = str(Path().absolute())
parent_path = str(Path().absolute().parent)
p_parent_path = str(Path().absolute().parent.parent)
sys.path.append(p_parent_path) 
print(f"主目录为:{
      p_parent_path}")
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

from sklearn.decomposition import PCA
import numpy as np
import matplotlib.pyplot as plt

2.2利用PCA降维

train_dataset = datasets.MNIST(root = p_parent_path+'/datasets/', train = True,transform = transforms.ToTensor(), download = False)
test_dataset = datasets.MNIST(root = p_parent_path+'/datasets/', train = False, 
                               transform = transforms.ToTensor(), download = False)

batch_size = len(train_dataset)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
X_train,y_train = next(iter(train_loader))
X_test,y_test = next(iter(test_loader))
X_train,y_train = X_train.cpu().numpy(),y_train.cpu().numpy() # tensor转为array形式)
X_test,y_test = X_test.cpu().numpy(),y_test.cpu().numpy() # tensor转为array形式)
X_train = X_train.reshape(X_train.shape[0],784)
X_test = X_test.reshape(X_test.shape[0],784)
m , p = X_train.shape # m:训练集数量,p:特征维度数
print(f"原本特征维度数:{
      p}") # 特征维度数为784

# n_components是>=1的整数时,表示期望PCA降维后的特征维度数
# n_components是[0,1]的数时,表示主成分的方差和所占的最小比例阈值,PCA类自己去根据样本特征方差来决定降维到的维度
model = PCA(n_components=0.95) 
lower_dimensional_data = model.fit_transform(X_train)
print(f"降维后的特征维度数:{
      model.n_components_}")

下面将样本还原,观察原始图片与原始图片的差异

approximation = model.inverse_transform(lower_dimensional_data) # 降维后的数据还原
plt.figure(figsize=(8,4));

# 原始图片
plt.subplot(1, 2, 1);
plt.imshow(X_train[1].reshape(28,28),
              cmap = plt.cm.gray, interpolation='nearest',
              clim=(0, 1));
plt.xlabel(f'{
      X_train.shape[1]} components', fontsize = 14)
plt.title('Original Image', fontsize = 20)
# 降维后的图片
plt.subplot(1, 2, 2);
plt.imshow(approximation[1].reshape(28, 28),
              cmap = plt.cm.gray, interpolation='nearest',
              clim=(0,1));
plt.xlabel(f'{
      model.n_components_} components', fontsize = 14)
plt.title('95% of Explained Variance', fontsize = 20)
plt.show()

前后对比

2.3、不同主成分个数对应的可解释方差分析(Explained Variance)

model = PCA() # 这里需要分析所有主成分,所以不降维
model.fit(X_train)
tot = sum(model.explained_variance_) 
var_exp = [(i/tot)*100 for i in sorted(model.explained_variance_, reverse=True)] 
cum_var_exp = np.cumsum(var_exp)
plt.figure(figsize=(10, 5))
plt.step(range(1, p+1), cum_var_exp, where='mid',label='cumulative explained variance') # p:特征维度数
plt.title('Cumulative Explained Variance as a Function of the Number of Components')
plt.ylabel('Cumulative Explained variance')
plt.xlabel('Principal components')
plt.axhline(y = 95, color='k', linestyle='--', label = '95% Explained Variance')
plt.axhline(y = 90, color='c', linestyle='--', label = '90% Explained Variance')
plt.axhline(y = 85, color='r', linestyle='--', label = '85% Explained Variance')
plt.legend(loc='best')
plt.show()

不同主成分个数对应的可解释方差分析

def explained_variance(percentage, images): 
    '''
       :param: percentage [float]: 降维的百分比
       :return: approx_original: 降维后还原的图片
       :return: model.n_components_: 降维后的主成分个数
    '''   
    model = PCA(percentage)
    model.fit(images)
    components = model.transform(images)
    approx_original = model.inverse_transform(components)
    return approx_original,model.n_components_
plt.figure(figsize=(8,10));
percentages = [784,0.99,0.95,0.90]
for i in range(1,5):
    plt.subplot(2,2,i)
    im, n_components = explained_variance(percentages[i-1], X_train)
    im = im[5].reshape(28, 28) # 重建成图片
    plt.imshow(im,cmap = plt.cm.gray, interpolation='nearest',clim=(0,1))
    plt.xlabel(f'{
      n_components} Components', fontsize = 12)
    if i==1:
        plt.title('Original Image', fontsize = 14)
    else:
        plt.title(f'{
      percentages[i-1]*100}% of Explained Variance', fontsize = 14)
plt.show()

ada

3.总结

PCA法是通过选出使样本方差最大的维度来求主成分的。那么确定了主成分的方向向量后,就需要将高维数据向低维数据映射。方法就是将样本分别点乘每一个主成分向量(数),得到k个数并组成向量。以此类推,完成高维n到低维k的映射。其公式为: X ⋅ W k T = X k X \cdot W_{k}^{T}=X_{k} XWkT=Xk

我们在使用sklearn中提高的PCA方法时,需要先初始化实例对象(此时可以传递主成分个数),fit操作得到主成分后进行降维映射操作pca.transform。在初始化实例对象时,也可以传入一个数字,表示主成分所解释的方差比例,即每个主成分对原始数据方差的重要程度。忽略对原始方差影响小的成分,在时间和准确度之间做一个权衡。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_42258383/article/details/122247955

智能推荐

oracle 12c 集群安装后的检查_12c查看crs状态-程序员宅基地

文章浏览阅读1.6k次。安装配置gi、安装数据库软件、dbca建库见下:http://blog.csdn.net/kadwf123/article/details/784299611、检查集群节点及状态:[root@rac2 ~]# olsnodes -srac1 Activerac2 Activerac3 Activerac4 Active[root@rac2 ~]_12c查看crs状态

解决jupyter notebook无法找到虚拟环境的问题_jupyter没有pytorch环境-程序员宅基地

文章浏览阅读1.3w次,点赞45次,收藏99次。我个人用的是anaconda3的一个python集成环境,自带jupyter notebook,但在我打开jupyter notebook界面后,却找不到对应的虚拟环境,原来是jupyter notebook只是通用于下载anaconda时自带的环境,其他环境要想使用必须手动下载一些库:1.首先进入到自己创建的虚拟环境(pytorch是虚拟环境的名字)activate pytorch2.在该环境下下载这个库conda install ipykernelconda install nb__jupyter没有pytorch环境

国内安装scoop的保姆教程_scoop-cn-程序员宅基地

文章浏览阅读5.2k次,点赞19次,收藏28次。选择scoop纯属意外,也是无奈,因为电脑用户被锁了管理员权限,所有exe安装程序都无法安装,只可以用绿色软件,最后被我发现scoop,省去了到处下载XXX绿色版的烦恼,当然scoop里需要管理员权限的软件也跟我无缘了(譬如everything)。推荐添加dorado这个bucket镜像,里面很多中文软件,但是部分国外的软件下载地址在github,可能无法下载。以上两个是官方bucket的国内镜像,所有软件建议优先从这里下载。上面可以看到很多bucket以及软件数。如果官网登陆不了可以试一下以下方式。_scoop-cn

Element ui colorpicker在Vue中的使用_vue el-color-picker-程序员宅基地

文章浏览阅读4.5k次,点赞2次,收藏3次。首先要有一个color-picker组件 <el-color-picker v-model="headcolor"></el-color-picker>在data里面data() { return {headcolor: ’ #278add ’ //这里可以选择一个默认的颜色} }然后在你想要改变颜色的地方用v-bind绑定就好了,例如:这里的:sty..._vue el-color-picker

迅为iTOP-4412精英版之烧写内核移植后的镜像_exynos 4412 刷机-程序员宅基地

文章浏览阅读640次。基于芯片日益增长的问题,所以内核开发者们引入了新的方法,就是在内核中只保留函数,而数据则不包含,由用户(应用程序员)自己把数据按照规定的格式编写,并放在约定的地方,为了不占用过多的内存,还要求数据以根精简的方式编写。boot启动时,传参给内核,告诉内核设备树文件和kernel的位置,内核启动时根据地址去找到设备树文件,再利用专用的编译器去反编译dtb文件,将dtb还原成数据结构,以供驱动的函数去调用。firmware是三星的一个固件的设备信息,因为找不到固件,所以内核启动不成功。_exynos 4412 刷机

Linux系统配置jdk_linux配置jdk-程序员宅基地

文章浏览阅读2w次,点赞24次,收藏42次。Linux系统配置jdkLinux学习教程,Linux入门教程(超详细)_linux配置jdk

随便推点

matlab(4):特殊符号的输入_matlab微米怎么输入-程序员宅基地

文章浏览阅读3.3k次,点赞5次,收藏19次。xlabel('\delta');ylabel('AUC');具体符号的对照表参照下图:_matlab微米怎么输入

C语言程序设计-文件(打开与关闭、顺序、二进制读写)-程序员宅基地

文章浏览阅读119次。顺序读写指的是按照文件中数据的顺序进行读取或写入。对于文本文件,可以使用fgets、fputs、fscanf、fprintf等函数进行顺序读写。在C语言中,对文件的操作通常涉及文件的打开、读写以及关闭。文件的打开使用fopen函数,而关闭则使用fclose函数。在C语言中,可以使用fread和fwrite函数进行二进制读写。‍ Biaoge 于2024-03-09 23:51发布 阅读量:7 ️文章类型:【 C语言程序设计 】在C语言中,用于打开文件的函数是____,用于关闭文件的函数是____。

Touchdesigner自学笔记之三_touchdesigner怎么让一个模型跟着鼠标移动-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏13次。跟随鼠标移动的粒子以grid(SOP)为partical(SOP)的资源模板,调整后连接【Geo组合+point spirit(MAT)】,在连接【feedback组合】适当调整。影响粒子动态的节点【metaball(SOP)+force(SOP)】添加mouse in(CHOP)鼠标位置到metaball的坐标,实现鼠标影响。..._touchdesigner怎么让一个模型跟着鼠标移动

【附源码】基于java的校园停车场管理系统的设计与实现61m0e9计算机毕设SSM_基于java技术的停车场管理系统实现与设计-程序员宅基地

文章浏览阅读178次。项目运行环境配置:Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:Springboot + mybatis + Maven +mysql5.7或8.0+html+css+js等等组成,B/S模式 + Maven管理等等。环境需要1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。_基于java技术的停车场管理系统实现与设计

Android系统播放器MediaPlayer源码分析_android多媒体播放源码分析 时序图-程序员宅基地

文章浏览阅读3.5k次。前言对于MediaPlayer播放器的源码分析内容相对来说比较多,会从Java-&amp;amp;gt;Jni-&amp;amp;gt;C/C++慢慢分析,后面会慢慢更新。另外,博客只作为自己学习记录的一种方式,对于其他的不过多的评论。MediaPlayerDemopublic class MainActivity extends AppCompatActivity implements SurfaceHolder.Cal..._android多媒体播放源码分析 时序图

java 数据结构与算法 ——快速排序法-程序员宅基地

文章浏览阅读2.4k次,点赞41次,收藏13次。java 数据结构与算法 ——快速排序法_快速排序法