损失函数loss改进解析_改进loss-程序员宅基地

技术标签: 人脸识别  

题图依然来自Coco!上篇地址:

YaqiLYU:人脸识别的LOSS(上) zhuanlan.zhihu.com图标

Feature Normalization

  • Liu Y, Li H, Wang X. Rethinking feature discrimination and polymerization for large-scale recognition [C]// NIPS workshop, 2017.

COCO(congenerous cosine) loss: sciencefans/coco_loss,归一化了权值c,归一化了特征f,并乘尺度因子 \alpha

half MS-1M训练集,用coco loss训练Inception ResNet,在LFW上达到99.86%,接近满分,但要注意,同样的训练集和CNN,Softmax loss训练的结果是99.75%。

  • Ranjan R, Castillo C D, Chellappa R. L2-constrained softmax loss for discriminative face verification [J]. arXiv:1703.09507, 2017.

L2-Softmax: 在Softmax的w*x基础上,将特征向量x做归一化,并乘尺度因子进行放大:

尺度因子 \alpha 可以是固定值,也可以自适应训练,建议用固定值 \alpha=50 。可以MS-Celeb-1M的子集3.7M图像作为训练集,用L2-Softmax训练ResNeXt-101在LFW上达到了99.78%,与center loss联合使用也有提升。

  • Wang F, Xiang X, Cheng J, et al. NormFace: L2 Hypersphere Embedding for Face Verification [C]// ACM MM, 2017.

NormFace: happynear/NormFace,归一化了特征,同样加了尺度因子s,但这里推荐用自动学习的方法:

归一化后的softmax, contrastive 和center loss都用不同程度的提升,0.49M的CASIA-WebFace训练集28层ResNet,归一化前后,softmax从98.28%提升到99.16%,center loss从99.03%提升到了99.17%。

特征归一化的重要性

  • 从最新方法来看,权值W和特征f(或x)归一化已经成为了标配,而且都给归一化特征乘以尺度因子s进行放大,目前主流都采用固定尺度因子s的方法(看来自适应训练没那么重要);
  • 权值和特征归一化使得CNN更加集中在优化夹角上,得到的深度人脸特征更加分离
  • 特征归一化后,特征向量都固定映射到半径为1的超球上,便于理解和优化;但这样也会压缩特征表达的空间;乘尺度因子s,相当于将超球的半径放大到s,超球变大,特征表达的空间也更大(简单理解:半径越大球的表面积越大);
  • 特征归一化后,人脸识别计算特征向量相似度,L2距离和cos距离意义等价,计算量也相同,我们再也不用纠结到底用L2距离还会用cos距离:
  • 为什么仅特征归一化无法收敛,而必须乘固定尺度因子呢?以四分类为例分析。
  1. 仅特征归一化时,输出 \left\{ x_{1}, x_{2}, x_{3}, x_{4} \right\} 等价于 \left\{ cos(\theta), x_{2}, x_{3}, x_{4} \right\} ,理想情况下,优后 \theta 是0,x2=x3=x4都输出0,此时激活值为{1, 0, 0, 0},指数函数非线性放大后输出为{e, 1, 1, 1},归一化后置信度是{47.54%, 17.49%, 17.49%, 17.49%},远远达不到收敛的要求,所以仅归一化是不能训练的
  2. 归一化后乘尺度因子s,这里以s=60为例,输出 \left\{ x_{1}, x_{2}, x_{3}, x_{4} \right\} 等价于 \left\{ 60\cdot cos(\theta), x_{2}, x_{3}, x_{4} \right\} ,理想情况下,优后 \theta 是0,x2=x3=x4都输出0,此时激活值为{60, 0, 0, 0},指数函数非线性放大后输出为{exp(60), 1, 1, 1},归一化后置信度是{100%, 0%, 0%, 0%},完全可以达到收敛要求。所以特征归一化必须乘尺度因子。

Additive Margin Loss

  • Wang F, Liu W, Liu H, et al. Additive Margin Softmax for Face Verification [C]// ICLR 2018 (Workshop) .

AM-Softmaxhappynear/AMSoftmax,在SphereFace的基础上,乘性margin改成了加性margin,即 cos(m\theta) 变成了 cos\theta-m,在权值W归一化的基础上对特征f也做了归一化,采用固定尺度因子s=30,相比SphereFace性能有提升,最重要的是训练难度大幅降低,不需要退火优化。此外,论文还做了训练集CASIA-WebFace与测试集LFW和MegaFace的重叠identity清理,LFW从Center Loss和SphereFace清理的3对增加到17对,实验证明影响较大。AM-Softmax的特点是小训练集小网络,仅20层CNN,在清理后CASIA-WebFace上训练,LFW达到了98.98%,在MegaFace上较SphereFace提升明显,有源码的好文推荐!

  • Wang H, Wang Y, Zhou Z, et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition [C]// CVPR, 2018.

CosFace:与AM-Softmax完全一样,同样的加性margin,同样的特征归一化,工作完成比AM-Softmax早。两个训练集没有提重叠身份清理的问题,0.49M小训练集CASIA-Webface,5M腾讯自己收集的大训练集,训练64层CNN,LFW上99.73%,MegaFace上大小训练集都是SOTA。对比AM-Softmax的结果,CosFace大网络和大训练集的性能提升非常明显,没有源码。

  • Jiankang Deng, Jia Guo, Stefanos Zafeiriou. ArcFace: Additive Angular Margin Loss for Deep Face Recognition [J]. arXiv:1801.07698. (Submitted to IJCV)

ArcFace: deepinsight/insightface,这个不是虹软的!这个不是虹软的!这个不是虹软的!仅仅是算法与虹软的人脸识别SDK重名了,没有一点关系。论文叫ArcFace,代码叫insightface,在SphereFace的基础上,同样改用加性margin但形式略有区别,cos(m\theta) 变成了 cos(\theta+m),同样也做了特征归一化,固定因子s=64。ArcFace的特点是大训练集加大网络,也做了细致的训练集和测试集清理,训练集MS-Celeb-1M从100k-10M清理到85k-3.8M,测试集MegaFace算法加人工清理后识别率提高了15%,大网络是100层CNN,在LFW上做到了99.83%,在MegaFace上large也是SOTA,目前是榜单第一名,论文篇幅较长,实验细致,强力推荐好文!

强力推荐insightface人脸识别project,基于mxnet训练速度快,包含所有sota的backbone和loss方便上手 InsightFace - 使用篇, 如何一键刷分LFW 99.80%, MegaFace 98%为了用这套环境,我已经转mxnet了 -_-!

不同margin的对比

目前人脸识别算法以large margin为主,这里提出并讨论两个问题:

问题一:large margin为什么能work?

  • L-Softmax重构了Softmax,输出x变成 W\cdot f=\left| W \right|\cdot\left| f \right|\cdot cos\theta ,SphereFace归一化权值W,变成W\cdot f=\left| f \right|\cdot cos\theta;最新AM-Softmax和ArcFace继续归一化特征乘尺度因子,变成 W\cdot f=s\cdot cos\theta 。所以这里我们简化问题,默认归一化权值W和特征f,即 e^{x}=e^{s\cdot cos\theta} ,仅考虑 cos(\theta) 这一项变动对分类任务的影响。
  • 还是讨论四分类问题,输出 \left\{ x_{1}, x_{2}, x_{3}, x_{4} \right\} 等价于 \left\{ s\cdot cos(\theta), x_{2}, x_{3}, x_{4} \right\} 。原始Softmax在输出x = {5, 1, 1, 1}时就接近收敛,训练停止,此时改用large margin softmax,第一列的 cos(\theta) 强制变成cos(m\theta)cos\theta-mcos(\theta+m),会使输出减小,其他列保持不变,此时输出可能变成了x = {4, 1, 1, 1},网络又可以继续训练了。
  • 这一过程与“从hardmax的 x 到softmax的 e^{x}非线性放大了输出,减小训练难度,使分类问题更容易收敛”正好相反,从 cos(\theta)cos(m\theta)cos\theta-mcos(\theta+m),都非线性减小了输出,增加训练难度,使训练得到的特征映射更好。
  • 不同loss的曲线对比,下图来自ArcFace,所有loss都是单调递减的。对比Softmax的 cos(\theta) 曲线,乘性margin的SphereFace对应cos(m\theta) 曲线下降最多,训练难度剧增,退火技术也难以收敛,反观加性margin的CosineFace和ArcFace下降较少,训练难度稍微增加,所以更容易收敛。

问题二:Large Margin到底优化了什么?

前面提到large margin显式约束了类间分离,看可视化结果好像也是这样,但其实这种说法是不对的。

  • large margin优化的核心——夹角 \theta 是权值W和特征f之间的夹角,并不是不同类别之间的夹角,loss函数也完全没有涉及不同类别特征向量之间的夹角约束。
  • 具体来看 W\cdot f=\left| W \right|\cdot\left| f \right|\cdot cos\theta ,考虑W和f都是归一化的,训练目标从 cos(\theta) 变成cos(4\theta)cos\theta-0.35cos(\theta+0.5),都减小了输出激活值,如果要达到目标置信度100%,就需要优化出比Softmax更小的夹角 \theta ,也就是说large margin的优化目标是让权值向量W和特征向量f之间的夹角更小
  • 对特定类别来说,假如有1000张图像,经CNN特征映射后得到1000个特征向量,而权值向量W是每个类别只有一个,large margin loss要求这1000个特征向量和这1个权值向量的夹角非常小,也就是说,优化让1000个特征向量都向权值向量W的方向靠拢
  • 下图是SphereFace(m=4)在MNIST上跑出来的特征映射,不同颜色代表不同类别,每个类别的中心白线就是这个类别的权值向量可视化的结果,与前面的分析完全一致。结论就是:large magin是显式的类内夹角约束,目标是让同一类的所有特征向量都拉向该类别的权值向量

人脸识别的SOTA

影响算法性能的因素:

  1. 训练集:一般训练集类别数越多,图像数量越多,训练效果越好。此外训练集的收集和标注质量,不同类别的样本数量是否均衡,都对训练有影响。
  2. CNN:一般CNN的容量越大,训练效果越好。CNN的模型容量参考ImageNet上的分类性能,与参数数量和运行速度并不是正比关系。
  3. LOSS:这部分才是前面介绍的loss相关影响,特别注意,对比某个loss的性能提升,要综合考虑训练集和CNN,不能简单的看LFW上的识别率。

最常用的两个人脸识别测试库,和以上推荐算法的性能比较,结果来自论文:

  1. LFW:LFW Face Database : Main,错误列表:LFW Face Database : Main,使用最多的必跑测试库,从2015年FaceNet的99.63%开始就接近饱和了,目前所有算法都在99%以上,比较意义不大。特别举两个用Softmax loss训练的例子:COCO中half MS-1M训练Inception ResNet是99.75%,ArcFace中MS1M训练ResNet100是99.7%。
  2. MegaFace: MegaFace,目前最大也最具挑战性的测试集,但由于这个数据集质量较差,非常容易作弊,建议以有开源代码的算法,自行训练的结果为准。问题讨论: iBUG_DeepInsight · Issue #49 · deepinsight/insightface

上表中AM-Softmax和InsightFace都做了更细致的训练集重叠清洗,最后一行代表InsightFace对测试集也做了清洗的结果。

END

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/m0_37192554/article/details/84964342

智能推荐

oracle 12c 集群安装后的检查_12c查看crs状态-程序员宅基地

文章浏览阅读1.6k次。安装配置gi、安装数据库软件、dbca建库见下:http://blog.csdn.net/kadwf123/article/details/784299611、检查集群节点及状态:[root@rac2 ~]# olsnodes -srac1 Activerac2 Activerac3 Activerac4 Active[root@rac2 ~]_12c查看crs状态

解决jupyter notebook无法找到虚拟环境的问题_jupyter没有pytorch环境-程序员宅基地

文章浏览阅读1.3w次,点赞45次,收藏99次。我个人用的是anaconda3的一个python集成环境,自带jupyter notebook,但在我打开jupyter notebook界面后,却找不到对应的虚拟环境,原来是jupyter notebook只是通用于下载anaconda时自带的环境,其他环境要想使用必须手动下载一些库:1.首先进入到自己创建的虚拟环境(pytorch是虚拟环境的名字)activate pytorch2.在该环境下下载这个库conda install ipykernelconda install nb__jupyter没有pytorch环境

国内安装scoop的保姆教程_scoop-cn-程序员宅基地

文章浏览阅读5.2k次,点赞19次,收藏28次。选择scoop纯属意外,也是无奈,因为电脑用户被锁了管理员权限,所有exe安装程序都无法安装,只可以用绿色软件,最后被我发现scoop,省去了到处下载XXX绿色版的烦恼,当然scoop里需要管理员权限的软件也跟我无缘了(譬如everything)。推荐添加dorado这个bucket镜像,里面很多中文软件,但是部分国外的软件下载地址在github,可能无法下载。以上两个是官方bucket的国内镜像,所有软件建议优先从这里下载。上面可以看到很多bucket以及软件数。如果官网登陆不了可以试一下以下方式。_scoop-cn

Element ui colorpicker在Vue中的使用_vue el-color-picker-程序员宅基地

文章浏览阅读4.5k次,点赞2次,收藏3次。首先要有一个color-picker组件 <el-color-picker v-model="headcolor"></el-color-picker>在data里面data() { return {headcolor: ’ #278add ’ //这里可以选择一个默认的颜色} }然后在你想要改变颜色的地方用v-bind绑定就好了,例如:这里的:sty..._vue el-color-picker

迅为iTOP-4412精英版之烧写内核移植后的镜像_exynos 4412 刷机-程序员宅基地

文章浏览阅读640次。基于芯片日益增长的问题,所以内核开发者们引入了新的方法,就是在内核中只保留函数,而数据则不包含,由用户(应用程序员)自己把数据按照规定的格式编写,并放在约定的地方,为了不占用过多的内存,还要求数据以根精简的方式编写。boot启动时,传参给内核,告诉内核设备树文件和kernel的位置,内核启动时根据地址去找到设备树文件,再利用专用的编译器去反编译dtb文件,将dtb还原成数据结构,以供驱动的函数去调用。firmware是三星的一个固件的设备信息,因为找不到固件,所以内核启动不成功。_exynos 4412 刷机

Linux系统配置jdk_linux配置jdk-程序员宅基地

文章浏览阅读2w次,点赞24次,收藏42次。Linux系统配置jdkLinux学习教程,Linux入门教程(超详细)_linux配置jdk

随便推点

matlab(4):特殊符号的输入_matlab微米怎么输入-程序员宅基地

文章浏览阅读3.3k次,点赞5次,收藏19次。xlabel('\delta');ylabel('AUC');具体符号的对照表参照下图:_matlab微米怎么输入

C语言程序设计-文件(打开与关闭、顺序、二进制读写)-程序员宅基地

文章浏览阅读119次。顺序读写指的是按照文件中数据的顺序进行读取或写入。对于文本文件,可以使用fgets、fputs、fscanf、fprintf等函数进行顺序读写。在C语言中,对文件的操作通常涉及文件的打开、读写以及关闭。文件的打开使用fopen函数,而关闭则使用fclose函数。在C语言中,可以使用fread和fwrite函数进行二进制读写。‍ Biaoge 于2024-03-09 23:51发布 阅读量:7 ️文章类型:【 C语言程序设计 】在C语言中,用于打开文件的函数是____,用于关闭文件的函数是____。

Touchdesigner自学笔记之三_touchdesigner怎么让一个模型跟着鼠标移动-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏13次。跟随鼠标移动的粒子以grid(SOP)为partical(SOP)的资源模板,调整后连接【Geo组合+point spirit(MAT)】,在连接【feedback组合】适当调整。影响粒子动态的节点【metaball(SOP)+force(SOP)】添加mouse in(CHOP)鼠标位置到metaball的坐标,实现鼠标影响。..._touchdesigner怎么让一个模型跟着鼠标移动

【附源码】基于java的校园停车场管理系统的设计与实现61m0e9计算机毕设SSM_基于java技术的停车场管理系统实现与设计-程序员宅基地

文章浏览阅读178次。项目运行环境配置:Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:Springboot + mybatis + Maven +mysql5.7或8.0+html+css+js等等组成,B/S模式 + Maven管理等等。环境需要1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。_基于java技术的停车场管理系统实现与设计

Android系统播放器MediaPlayer源码分析_android多媒体播放源码分析 时序图-程序员宅基地

文章浏览阅读3.5k次。前言对于MediaPlayer播放器的源码分析内容相对来说比较多,会从Java-&amp;amp;gt;Jni-&amp;amp;gt;C/C++慢慢分析,后面会慢慢更新。另外,博客只作为自己学习记录的一种方式,对于其他的不过多的评论。MediaPlayerDemopublic class MainActivity extends AppCompatActivity implements SurfaceHolder.Cal..._android多媒体播放源码分析 时序图

java 数据结构与算法 ——快速排序法-程序员宅基地

文章浏览阅读2.4k次,点赞41次,收藏13次。java 数据结构与算法 ——快速排序法_快速排序法