LSTM Siamese neural network-程序员宅基地

技术标签: lstm  rnn  人工智能  

本文中的代码在Github仓库Gitee仓库中可找到。

在这里插入图片描述

Hi, 你好。我是茶桁。

大家是否还记得,在「核心基础」课程中,我们讲过CNN以及LSTM。

卷积神经网络(CNN)已经在计算机视觉处理中得到广泛应用,不过,2017年开创性的Transformer神经网络的开创性使其称为一种可行的替代方案,Transformer是目前流行的ChatGPT的基础。它的主要缺点是需要大型数据集才能超越CNN同类产品。否则,在数据集有限的情况下,Transformer的性能回避CNN模型差。关于LSTM,它的设计目的是解决梯度消失问题,这个咱们在LSTM那一章中中有详细的解释,即在每次训练迭代过程中,权重和偏置无法有效更新。LSTM是一种递归神经网络,由存储单元组成,每个存储单元由输入门、输出门和遗忘门组成,位与隐层(Hidden Layer)/State之上。不过,与最新的Transformer相比,LSTM的信息保留时间较长。

因此,就深度学习而言,LSTM 的特性使其可以应用于自然语言处理和时间序列预测等领域。还有人提出了一种混合架构,如计算机视觉处理中的 LSTM-CNN 模型 1。本文的论点是,LSTM 模型本身的性质使其能够被训练并用于图像分类和对比目的,因此仅 LSTM 模型就足够了。

从理论上讲,分类模型会使用一个名为"CrossEntropyLoss"的函数来调整权重,以便模型在每次训练迭代时都能做出更准确的预测。另一方面,Siamese neural network使用另一个函数,它与"CrossEntropyLoss"有相似之处,但并不相同,被称为 “对比损失”。

对比损失的计算公式
L ( W , Y , x ⃗ 1 , x ⃗ 2 ) = ( 1 − Y ) 1 2 ( D W ) 2 + ( Y ) 1 2 { m a x ( 0 , m − D W ) } 2 \begin{align*} & L(W, Y, \vec x_1, \vec x_2 ) = \\ & (1-Y)\frac{1}{2}(D_W)^2 + (Y)\frac{1}{2} \{ max(0, m-D_W) \}^2 \end{align*} L(W,Y,x 1,x 2)=(1Y)21(DW)2+(Y)21{ max(0,mDW)}2

以上是对比损失的计算公式。Y要么为0,要么为1,这取决于我们是在比较相似项目还是不相似项目。在本练习的例子中,如果我们比较一个手写数字1和另一个手写数字1,Y将为0,否则,如果我们比较一个手写数字1和另一个手写数字,例如5,那么Y将为1

上述Dw指的是两个向量之间的欧氏距离,即机器在处理两个图像时,两个图像都被转换成n维向量。两个向量之间的距离越近,两幅图像相似的可能性就越大,例如两个手写数字1产生的欧氏距离就越近,而数字1与数字0相比,不同数字产生的向量产生的欧氏距离就越大。max函数用于确定边距减去欧氏距离后的最大值和零值。

Dw(欧几里得距离)的计算

D w ( x ⃗ 1 , x ⃗ 2 ) = ∣ ∣ G W ( x ⃗ 1 ) − G W ( x ⃗ 2 ) ∣ ∣ 2 D_w(\vec x_1, \vec x_2) = ||G_W(\vec x_1) - G_W(\vec x_2) ||_2 Dw(x 1,x 2)=∣∣GW(x 1)GW(x 2)2

这段公式演示的是欧氏距离的计算,其中Gw是一个欧氏距离函数(在Python编码中,可以是cdist或pairwise_distance函数),用于计算Siamese neural network输出之间的欧氏距离,该函数基于Yann LeCun及其同事之前的工作2

因此,Siamese model可以增强分类模型,即它可以确定分类模型分类的图像与分类模型确定的同一类别中随机选择的图像之间的欧氏距离。直观上,同一类图像的欧氏距离很近。分类模型可能会无意中将图像分类错误。如果"1"被错误地分类为另一个数字,理论上,Siamese model在比较图像和错误图像类别的随机样本时,应该能检测到更大的欧氏距离。为了纠正错误分类,Siamese model还可以将图像与其他类别的图像随机样本进行比较,以确定欧氏距离最小的类别,从而得出正确的图像分类。

LSTM 图像分类模型

我们将会使用「MNIST数据集」进行训练和评估。MNIST数据集包含0到9的手写数字,其中 60,000个用于训练,其余10,000个用于评估。编码使用Python完成,并在我自己的M1上进行编译和运行。

import torch
from torch import nn, optim
from torchvision import datasets, transforms
import torch.nn.functional as F

import numpy as np
import torchvision as tv
import matplotlib.pyplot as plt
import datetime
from tqdm import tqdm

我们首先导入库和依赖项。随后下载MNIST数据集,并初始化训练和评估数据加载器。

# 下载 MNIST 数据集并初始化 dataloader
transform = transforms.Compose([transforms.ToTensor()])
ds_train = tv.datasets.MNIST(root="dataset/", train=True, download=True, transform=transform) 
ds_val = tv.datasets.MNIST(root="dataset/", train=False, download=True, transform=transform) 
train_ldr = torch.utils.data.DataLoader(ds_train, batch_size=50, shuffle=True, num_workers=2) 
evaluate_ldr = torch.utils.data.DataLoader(ds_val, batch_size=50, shuffle=False, num_workers=2) 

其实原本CPU训练就足够了,但是既然PyTorch已经支持M1的GPU运算,那我为什么不用呢,这将会使得我的训练速度加快,所以在定义LSTM模型的时候,我们需要动态生成Hidden state和Cell state,然后通过forward方法传入数据和动态生成的Hidden state和Cell state。

定义LSTM模型。Hidden size指的是每个LSTM单元的单元数。如果模型需要捕捉和执行更高层次的抽象,从而理解更复杂的模式和依赖关系,那么谨慎的做法是增加更多的层数(下面代码中的 n_layer)。类数(num_classes)指的是需要区分的项目的类数。在本例中,模型需要区分从0到9这10个手写数字,因此,直观地说,类数为10。

class LSTM(nn.Module):
    def __init__(self, input_len, hidden_size, num_classes, n_layers):
        super(LSTM, self).__init__()
        self.hidden_size = hidden_size
        self.n_layers = n_layers
        self.lstm = nn.LSTM(input_len, hidden_size, n_layers, batch_first=True)
        self.output_layer = nn.Linear(hidden_size, num_classes)

    def forward(self, X):
        # 动态生成Hidden states和Cell states
        batch_size = X.size(0)
        hidden_states = torch.zeros(self.n_layers, batch_size, self.hidden_size).to(X.device)
        cell_states = torch.zeros(self.n_layers, batch_size, self.hidden_size).to(X.device)
        
        # 通过forward方法传入数据和动态生成的Hidden states和Cell states
        output, (hide, cell) = self.lstm(X, (hidden_states, cell_states))
        output = self.output_layer(output[:, -1, :])
        return output

随后,我们将初始化一个LSTM模型。Hidden Size为 128,即每个LSTM单元有128个单元,在本练习中,我们使用3层。

# 初始化 LSTM 模型
lstm_class_model = LSTM(28, 128, 10, 3)

接下来,我们需要定义训练模型以及进行设备声明和转移,在M1中如果我需要使用mps,也就是GPU运算,那么我需要将模型和数据都转移到mps:0里进行处理。

# 训练模型
learning_rate = 0.001
loss_fn = nn.CrossEntropyLoss()  
opt = torch.optim.Adam(lstm_class_model.parameters(), lr=learning_rate)

# 声明device
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
lstm_class_model.to(device)
loss_fn.to(device)

接下来,我们开始训练分类模型,注意在训练的时候,要讲述转移到mps

# random seeding
np.random.seed(1)  
torch.manual_seed(1)
print("\nLoading 60000 item training dataset")
print("\nCreating LSTM classification network")
print(lstm_class_model)

max_epoch = 50
arraylosses = []  

print("loss = Cross Entropy Loss")
print("optimizer = Adam")
print("maximum epochs = %3d " % max_epoch)
print("learning rate = %0.3f " % learning_rate)
print("\nStarting training")
lstm_class_model.train()  

for epoch in range(0, max_epoch):
    printlog('Epoch {0} / {1}'.format(epoch, max_epoch))
    ep_loss = 0
    loop = tqdm(enumerate(train_ldr), total=len(train_ldr), ncols=100)
    # for batch, (image, label) in enumerate(train_ldr):
    for i, batch in loop:
        features, labels = batch

        # 需要对图像进行重塑,使其适合LSTM模型, LSTM模型预期输入为3D数据  
        features = features.view(-1, 28, 28)

        features = features.to(device)
        labels = labels.to(device)

        preds = lstm_class_model(features)
        loss = loss_fn(preds, labels)
    
        # 损失求和
        ep_loss += loss.item()           
        opt.zero_grad()
        loss.backward()
        opt.step()
        if (i + 1) % 1200 == 0:
            # 使用数组来存储损失,以便绘制损失与时间的关系图
            arraylosses.append(ep_loss / 1200)    
            print("Epoch...{}".format(epoch + 1), "Cross entropy loss 1..{}".format(ep_loss / 1200))
print("Done ")

---
Loading 60000 item training dataset
...
Starting training
================================================================================2023-12-26 22:47:51
Epoch 0 / 50
100%|███████████████████████████████████████████████████████████| 1200/1200 [00:29<00:00, 46.84it/s]
Epoch...1 Cross entropy loss 1..0.40343018252790597
100%|███████████████████████████████████████████████████████████| 1200/1200 [00:30<00:00, 39.82it/s]
...
================================================================================2023-12-26 23:11:17
Epoch 49 / 50
100%|██████████████████████████████████████████████████████████▊| 1197/1200 [00:24<00:00, 57.22it/s]
Epoch...50 Cross entropy loss 1..0.0029736560586403962
100%|███████████████████████████████████████████████████████████| 1200/1200 [00:25<00:00, 47.63it/s]
Done 

漫长等待之后,我先是发现我的info里的epoch写错了,应该从第一个开始计算,那应该传入的参数是epoch+1。 好吧,这些都不重要,之后我对其做了一些修改。

在训练模型时,使用的学习率为0.001,并使用Adam优化器(一种在训练过程中调整模型参数以最小化损失函数的算法)。训练周期为50个epoch。批次大小是一个重要的超参数。较大的批次(可能超过100次)虽然会缩短训练时间,但会导致性能损失,因此需要调整学习率。这里使用的批次大小是50,即LSTM模型将一次处理50幅图像(转换为张量)。来自数据加载器的一批图像产生的形状为(50, 1, 28, 28),其中50代表一批图像的数量。为了让 LSTM模型处理图像,必须将这批图像重塑为(50, 28, 28)。如代码所示,使用reshape(-1,28,28)。这是因为LSTM只支持3D数据,如果传入4D数据,则会报错。

关于损失计算的一个小评论,作者的做法是按批次计算损失,即60000个样本有1200个批次。将损失除以60000个样本的总数量并没有错,只要损失在每个时间段都呈下降趋势,我们将曲线展示出来看看。

plt.plot(range(max_epoch), arraylosses)
plt.title("LSTM classification model training")
plt.xlabel("Epochs")
plt.ylabel("Losses")
plt.show()

在这里插入图片描述

随后,我们调用eval()方法。

lstm_class_model.eval()

下一步是创建用于训练Siamese神经网络(Siamese neural network)的数据加载器。数据集对训练模型极其重要,因此其设计的重要性无论如何强调都不为过。用于训练Siamese神经网络的数据集结构不同于用于训练分类模型的数据集结构,因为它需要同时生成两张随机图像和一个标志,在计算对比损失的上述公式中,标识被定义为Y。如果图像相似,标记为 0;如果不相似,标记为1

siamese_training_set = torch.utils.data.DataLoader(ds_train, batch_size=1)  

我们首先为MNIST数据集创建数据加载器,将批量大小设置为1,然后创建2个数组,分别用于存储图像和相应的标签。

# 图像数组可存储 60000 个图像
first_image_array = []  
# 标签数组,用于存储相应的图像标签
first_label_array = []  

for batch, (image, label) in enumerate(siamese_training_set):
    first_image_array.append(image)
    first_label_array.append(label)

图像数组和标签数组的大小为60000。不过,训练样本的大小随后会减半,变为30000个。

import random

tempimagearray = first_image_array
templabelarray = first_label_array
# 声明 2 组包含图像以及标签的数组
firstsetimagearray = []
firstsetlabelarray = []    
secondsetimagearray = []    
secondsetlabelarray = []

# 创建一个标识数组
flagarray = []
flag = 0

# 创建的数组大小为 30000
for i in range(30000): 
    # 从下 30000 个数组中随机生成一个数组位置
    num = random.randint(30000, 59999) 
    if first_label_array[i] == templabelarray[num]:
        # 评估随机生成的图像标签是否相似
        flag = 0        
    else: flag = 1
    # 将标识转换为张量进行处理
    flag = torch.tensor(flag, dtype=torch.float32).to(device) 
    firstsetimagearray.append(first_image_array[i])
    firstsetlabelarray.append(first_label_array[i])
    secondsetimagearray.append(tempimagearray[num])
    secondsetlabelarray.append(templabelarray[num])
    flagarray.append(flag)

Siamese模型的训练数据集从60000个减半为30000个,因为我们创建了两组图像数组,其中一组来自60000个数据集的前半部分,将输入第一个网络。我们使用随机方法从60000个数据集的后半部分随机生成数组索引,然后比较图像标签以确定它们是否相似,并根据结果创建一个标识(0或1),输入到标识数组中。

a = np.array(firstsetlabelarray)
b = np.array(firstsetimagearray)
# 使用NumPy数组将标签与相应图像堆叠在一起
c = np.array(secondsetlabelarray)   
# 创建一个二维数组
d = np.array(secondsetimagearray)   
firstsetarray = np.stack((a, b), axis=1)
secondsetarray = np.stack((c, d), axis=1)

然后,我们将图像和标签合并为一组。这样就创建了两组图像和标签组合数组。下一步是构建数据集,数据集将由数据加载器访问,用于训练。数据集架构有3个必须编码的基本功能:__init____len____getitem__

class Siamese_Training_Dataset(torch.utils.data.Dataset):
    # 现在我们将创建Siamese训练数据集类
    def __init__(self, firstsetarray, secondsetarray, flagarray):              
        self.dataset_size = len(firstsetarray)
        self.firstsetarray = firstsetarray
        self.secondsetarray = secondsetarray
        self.flagarray = flagarray

    def __len__(self):
        # 返回数组的大小,即3000
        return self.dataset_size 
        
    def __getitem__(self, index):
        image1 = self.firstsetarray[index][1]
        # 调整图像尺寸,以防万一
        image1 = image1.reshape(1, 28, 28)          
        label1 = self.firstsetarray[index][0]
        image2 = self.secondsetarray[index][1]
        image2 = image2.reshape(1, 28, 28)
        label2 = self.secondsetarray[index][0]
        flag = flagarray[index]
        return(image1, label1, image2, label2, flag)

# 创建数据集实例并用数组初始化
ds_siamese = Siamese_Training_Dataset(firstsetarray, secondsetarray, flagarray)

然后,我们用两组图像标签组合数组和标志数组初始化数据集,最后创建一个数据加载器实例。

# 从数据集创建数据加载器
siamese_dataloader = torch.utils.data.DataLoader(ds_siamese, batch_size=50, shuffle=True)  

随后,我们对Contrastive Loss类进行了编码。Contrastive Loss与cross entropy loss一样,在训练过程中对模型权重的调整起着重要作用。代码采用了James McCaffrey关于Siamese neural network的文章3

class ContrastiveLoss(nn.Module):
    def __init__(self, margin):
        # pre 3.3 语法
        super(ContrastiveLoss, self).__init__()
        # 边距或半径,这是一个可以定义的参数,定义为 2.0
        self.margin = margin  

    def forward(self, out1, out2, flag):                
        # flag = 0 意味着 out1 和 out2 应该是相同的
        # flag = 1 意味着 out1 和 out2 应该是不同的
        
        # 如前所述,计算2个输出向量之间的欧氏距离
        euclidean_distance = torch.nn.functional.pairwise_distance(out1, out2)  

        # 您可以选择按照 LeCun 的精确公式,乘以 1/2 损失值将减少一半                                        
        loss = torch.mean((1-flag) * torch.pow(euclidean_distance, 2) +
        (flag) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2)) 
        
        return loss

下一步是创建Siamese LSTM model。

class LSTM_Siamese_network(nn.Module):
    def __init__(self, input_len, hidden_size, num_classes, n_layers):
        super(LSTM_Siamese_network, self).__init__()
        self.hidden_size = hidden_size 
        self.n_layers = n_layers
        
        self.lstm = nn.LSTM(input_len, hidden_size, n_layers, batch_first=True) 
        self.output_layer = nn.Linear(hidden_size, num_classes)

    def feed(self, X):
        batch_size = X.size(0)
        hidden_states = torch.zeros(self.n_layers, batch_size, self.hidden_size).to(X.device)
        cell_states = torch.zeros(self.n_layers, batch_size, self.hidden_size).to(X.device)
        
        output, (hide, cell) = self.lstm(X, (hidden_states, cell_states))
        output = self.output_layer(output[:, -1, :])
        return output
    
    # 这里的 LSTM Siamese Model与分类模型不同, 它被转入2个LSTM网络,并返回2个输出结果
    def forward(self, x1, x2):    
        out1 = self.feed(x1)        
        out2 = self.feed(x2)        
        return out1, out2

然后我们就可以训练LSTM siamese model了,不过别忘了将模型和数据放到mps里。

lstm_siamese_train = LSTM_Siamese_network(28, 128, 10, 3)
lstm_siamese_train.to(device)

np.random.seed(1) 
torch.manual_seed(1)
print("\nLoading 30000 item training dataset")
print("\nCreating LSTM Siamese network")
print(lstm_siamese_train)

# 创建损失值数组
arraylosses2 = []  

loss_fn2 = ContrastiveLoss(2.0)
loss_fn2.to(device)

opt2= torch.optim.Adam(lstm_siamese_train.parameters(), lr=learning_rate)  

print("loss = Contrastive Loss")
print("optimizer = Adam")
print("maximum epochs = %3d " % max_epoch)
print("learning rate = %0.3f " % learning_rate)
print("\nStarting training")
lstm_siamese_train.train()


for epoch in range(0, max_epoch):
    printlog('Epoch {0} / {1}'.format(epoch+1, max_epoch))
    con_loss = 0
    loop = tqdm(enumerate(siamese_dataloader), total=len(siamese_dataloader), ncols=100) 
    for i, batch in loop:
        feature1, label1, feature2, label2, flag = batch

        feature1 = feature1.reshape(-1, 28, 28).to(device)
        feature2 = feature2.reshape(-1, 28, 28).to(device)
        label1 = label1.to(device)
        label2 = label2.to(device)

        preds1, preds2 = lstm_siamese_train(feature1, feature2)
        loss = loss_fn2(preds1, preds2, flag)

        # 损失求和
        con_loss += loss.item()
        opt2.zero_grad()
        loss.backward()
        opt2.step()

        # 由于样本总数为 30000,批次总数 = 30000 / 50 = 600
        if (i + 1) % 600 == 0: 
            # 使用数组来存储损失,以便绘制损失与时间的关系图
            arraylosses2.append(con_loss / 600) 
            print(
                "Epoch...{}".format(epoch + 1),
                "Contrastive loss...{}".format(con_loss / 600),
            )
print("Done ")

---
Loading 30000 item training dataset
...
Starting training
================================================================================
2023-12-26 23:14:33
Epoch 1 / 50

  0%|                                                                       | 0/600 [00:00<?, ?it/s]
100%|█████████████████████████████████████████████████████████████| 600/600 [00:18<00:00, 33.18it/s]
Epoch...1 Contrastive loss...0.27657042890166245
...
================================================================================
2023-12-26 23:29:26
Epoch 50 / 50

100%|█████████████████████████████████████████████████████████████| 600/600 [00:18<00:00, 33.04it/s]
Epoch...50 Contrastive loss...0.004726815089738921
Done 

又是漫长的等待,倒杯水,上个厕所。这次我把info改过来了。

好,依然打印loss看看:

plt.plot(range(max_epoch), arraylosses2)
plt.xlabel("Epochs")
plt.ylabel("Losses")
plt.title("LSTM Siamese neural network training")
plt.show()

在这里插入图片描述

调用eval()

lstm_siamese_train.eval()

接下来,我们将测试图像分组到数组中,相同数字的图像被放入同一个数组中。共有 10个数组。

# 创建数据加载器,以创建存储测试的数组
mnist_siamese_set = torch.utils.data.DataLoader(ds_val, batch_size=1, shuffle=False) 

# 包含所有测试图像的数组
masterimagearray = [] 
masterimagelabels = []

# 创建可访问的 0 至 9 数组, 通过LSTM Siamese Network进行评估
testzeros = []
testones = []
testtwos = []    
testthrees = []  
testfours = []
testfives = []
testsixes = []
testsevens = []
testeights = []
testnines = []

for batch, (images, labels) in enumerate(mnist_siamese_set):
    images = images.to(device)
    labels = labels.to(device)
    masterimagearray.append(images)
    masterimagelabels.append(labels)

    if labels == 0:
        testzeros.append(images)
    elif labels == 1:
        testones.append(images)
    elif labels == 2:
        testtwos.append(images)
    elif labels == 3:
        testthrees.append(images)
    elif labels == 4:
        testfours.append(images)
    elif labels == 5:
        testfives.append(images)
    elif labels == 6:
        testsixes.append(images)
    elif labels == 7:
        testsevens.append(images)
    elif labels == 8:
        testeights.append(images)
    else:
        testnines.append(images)

随后,我们将数字数组合并为一个数组。

arrayoftestnumbers = [testzeros, testones, testtwos, testthrees, testfours, testfives, testsixes, testsevens, testeights, testnines]

Siamese model可用于分类,其依据是,与两幅不同类别的图像相比,同一类图像的欧氏距离较小。虽然Siamese model在概念上是两个输入之间的对比模型,但它仍然可以进行分类,而且正如随后所演示的那样,在LSTM模型对图像进行错误分类的某些情况下,它还可以充当校正器。对于Siamese model来说,已知的对比图像是必不可少的。对比图像的使用在一定程度上受到了医学界临床试验设计的启发,在医学界,评估某种特定方法是否有效的金标准是通过随机双盲临床试验来实现的。因此,这里的关键词是 “随机”。为了提高Siamese model正确识别图像的概率,该模型可以将图像与随机选取的10张(或更多)从 0到9每个数字的图像进行比较,然后计算欧氏距离的平均值。在本练习中,测试集图像被用作比较对象。这就解释了为什么要创建一个由每个数字的存储数组组成的大型数组。

def EvaluateSiamese(image):
    sumdist = []
    resultsarray = []
    euclid_distance = None
    for i in range(len(arrayoftestnumbers)):
        num = 0
        for ii in range(10):
            # 生成随机数的方式不会生成相同的随机数
            num = random.randint(num, num + 80)
            with torch.no_grad():
                out1, out2 = lstm_siamese_train(image.view(-1, 28, 28), arrayoftestnumbers[i][num].view(-1, 28, 28))
                # 计算欧几里得距离
                dist = torch.nn.functional.pairwise_distance(out1, out2) 
            # 追加到数组
            sumdist.append(dist)
        # 欧几里得距离平均值
        result = sum(sumdist) / 10 
        sumdist = []
        resultsarray.append(result)

    correctanswer = None

    for i in range(10):
        # 正确答案是欧氏距离小于1.0的答案
        if resultsarray[i] < 1.0: 
            correctanswer = i
            euclid_distance = resultsarray[i]
    # 用欧几里得距离返回正确答案
    return correctanswer, euclid_distance #returns the correct answer with euclidean distance

这里的函数包含了前面提到的Siamese model,它将相关图像与从0到9的10个相同数字的图像进行比较,并计算平均欧氏距离。确定测试图像是否与已知的测试比较图像属于同一类别的临界值是1.0。LSTM Siamese model有三种可能的预测结果–正确、不知道(计算出的与所有随机已知对比图像的平均欧氏距离大于 1.0和错误。

好了,让我们随机测试一下分类模型和Siamese model

# 创建测试集
mnist_test_set = torch.utils.data.DataLoader(ds_val, batch_size=50, shuffle=False)

在此,我们任意选择50个测试集。

test_image_batch = None
test_image_label = None
# 从测试集中选择一个随机图像集来测试分类模型
for batch, (image, label) in enumerate(mnist_test_set):  
    # 测试集包括 10000 个样本,分成 200 批,每批 50 个图像
    if batch == 51: 
        test_image_batch = image.to(device)
        test_image_label = label.to(device)
        break

我们随机输入一个数字,得到我们要测试分类模型的一批图像和标签。在上面的代码中,我们拿到了第52(51 + 1)批图像。

with torch.no_grad():
    # 使用视图功能将图像重塑为 50、28、28
    output = lstm_class_model(test_image_batch.view(-1, 28, 28)) 

随后,我们对模型进行了测试,并得出了预测结果。

predicted = torch.max(output, 1)[1]

positions = []

for i in range(50):
    # 获得数组中的位置
    if predicted[i] != test_image_label[i]:
       # 图像被错误分类
       positions.append(i)

上述代码可获得LSTM分类模型出错的数组位置。一般来说,LSTM分类模型的准确率为 96-98%。

positions

在编码栏输入位置后,代码会显示分类模型出错的数组位置。在这里,模型在第52个测试批次的第47个位置出错,也就是第2597个位置(因为这是第52个批次,所以是51*50+47)。

predicted[47]

---
tensor(3, device='mps:0')

上面代码中模型预测为3.

为使Siamese model得出正确的分类结果,平均欧氏距离的临界值被确定为小于 1.0。

answer, dist = EvaluateSiamese(masterimagearray[3762])

if answer == masterimagelabels[3762]:
    print("Answer is " + str(answer) + " and correct " + " distance is " + str(dist))
elif answer is None:
    print("Don't know answer")
else: print("Wrong answer, given answer is " + str(answer) + " but answer is " + str(masterimagelabels[3762]))

---
Answer is 6 and correct  distance is tensor([0.5165], device='mps:0')

我们根据LSTM Siamese model进行验证。测试集的第3762张图像是手写的6图像,但分类模型将其归类为8。LSTM Siamese model能够得出正确的分类。

同样,在第3767张测试图像中,本应是手写的 “7”,却被分类模型误判为 “2”。

answer, dist = EvaluateSiamese(masterimagearray[3767])

if answer == masterimagelabels[3767]:
   print("Answer is " + str(answer) + " and correct " + " distance is " + str(dist))
elif answer is None:
   print("Don't know answer")
else: print("Wrong answer, given answer is " + str(answer) + " but answer is " + str(masterimagelabels[3767]))

---
Answer is 7 and correct  distance is tensor([0.6107], device='mps:0')

在第 3941 张测试图像上,分类模型预测结果为 6,而通过Siamese model运行后得出的正确答案为 4。

answer, dist = EvaluateSiamese(masterimagearray[3941])

if answer == masterimagelabels[3941]:
   print("Answer is " + str(answer) + " and correct " + " distance is " + str(dist))
elif answer is None:
    print("Don't know answer")
else: print("Wrong answer, given answer is " + str(answer) + " but answer is " + str(masterimagelabels[3941]))

---
Answer is 4 and correct  distance is tensor([0.6454], device='mps:0')

这是使用Siamese model进行分类的演示。它基于这样一个概念:同一类图像的欧氏距离比不同类图像的欧氏距离要小。分类的关键步骤是将查询到的图像与已知的同类图像随机样本进行比较。对比的已知随机样本越大,Siamese model分类的可信度就越高。已知随机样本是Siamese model以前从未见过的样本。在这种情况下,通过用分类模型分类错误的样本对Siamese model进行测试,前者得出了正确答案,这表明Siamese model不仅可以用作验证器,还可以发展成为一个独立的分类模型。

引用


  1. Islam MZ, Islam MM, Asraf A. A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Inform Med Unlocked. 2020;20:100412. doi: 10.1016/j.imu.2020.100412. Epub 2020 Aug 15. PMID: 32835084; PMCID: PMC7428728.

  2. R. Hadsell, S. Chopra and Y. LeCun, “Dimensionality Reduction by Learning an Invariant Mapping,” 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 2006, pp. 1735–1742, doi: 10.1109/CVPR.2006.100.

  3. Yet Another Siamese Neural Network Example Using PyTorch

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ivandoo/article/details/135266664

智能推荐

centos磁盘分区,格式化,挂载(永久挂载)_centos 永久挂载-程序员宅基地

文章浏览阅读2.8k次。虚拟机,添加新的硬盘进行分区,格式化,挂载的操作_centos 永久挂载

SQL优化-索引 (三)只要建立索引就能显著提高查询速度(转)-程序员宅基地

文章浏览阅读504次。2、只要建立索引就能显著提高查询速度  事实上,我们可以发现上面的例子中,第2、3条语句完全相同,且建立索引的字段也相同;不同的仅是前者在fariqi字段上建立的是非聚合索引,后者在此字段上建立的是聚合索引,但查询速度却有着天壤之别。所以,并非是在任何字段上简单地建立索引就能提高查询速度。  从建表的语句中,我们可以看到这个有着1000万数据的表中fariqi字段有5003个不同记录。在此..._索引对查询效率非常有用,在建表时就应该建好且建完整

前端项目开发流程_前端开发流程sop-程序员宅基地

文章浏览阅读3.2w次,点赞20次,收藏180次。当前分为以下四个阶段第一阶段库/框架选型(暂定react)第二阶段简单构建优化 NPM管理包node+webpack打包第三阶段JS、CSS模块化开发第四阶段组件化开发 开发过程当中注意:前端安全XSS CSRF攻击等 后期文章中将讲述如何_前端开发流程sop

个人云电脑-推荐方案 - Parsec / Fastlink_parsec 局域网-程序员宅基地

文章浏览阅读1w次。个人云电脑-推荐方案 - Parsec / FastlinkParsec安利原文局域网游戏串流:让我们都做一回「云」玩家Parsec 是游戏串流工具中的新秀。与其他不同的是,Parsec 推荐 PC-PC 间云游戏,不论是局域网还是公网通吃,这就是 Parsec 比较厉害的地方。两台设备之间的流量不通过 Parsec 云服务器,而是 Peer to Peer,Parsec 自己宣称自己使用了很多技术来保证玩家的联机体验。但国内的家庭宽带一般都是 NAT 环境(部分运营商可以._parsec 局域网

linux之find命令,Linux基础知识之find命令详解-程序员宅基地

文章浏览阅读148次。在运维人员操作系统时,要接触大量的文件,为了避免忘记文件存放位置的尴尬,就需要我们有一种文件查找工具的帮忙,下面是两个文件查找工具的详解,locate以及find,分别分享给大家。第一款工具: Locatelocate - find files by namelocate的工作依赖于事先构建好的索引库;查找文件时,直接搜索索引库里记载的文件的位置;索引库的构建:系统自动实现(周期性任务);手动更新..._find -name -r

登录模块 用户认证 SpringSecurity +Oauth2+Jwt_spring security 6+oauth2 +jwt+密码认证-程序员宅基地

文章浏览阅读6.7k次,点赞7次,收藏87次。SpringSecurity Oauth2 jwtSpringSecurity Oauth2 jwt1 用户认证分析1.1 单点登录1.2 第三方账号登录2 认证解决方案2.1 单点登录技术方案2.2 第三方登录技术方案2.2.1 Oauth2认证流程2.2.2 Oauth2在项目的应用2.3 Spring security Oauth2认证解决方案3 Jwt令牌回顾3.1 令牌结构3.2 生成私钥公钥3.3 基于私钥生成jwt令牌3.3.1导入认证服务3.3.2 认证服务中创建测试类3.4 基于公_spring security 6+oauth2 +jwt+密码认证

随便推点

Ubuntu 16.04-18.04中安装 WPS Office 2016 for Linux(集合篇含字体解决方法)简单好用-程序员宅基地

文章浏览阅读1.3w次。金山软件办公套件的最新更新 WPS 2016 for Linux,日前发布了几项新功能,性能改进和各种修复。为什么选择WPS办公套件?WPS Office由三个主要组件组成:WPS 文字,WPS 演示和WPS 表格。它看起来非常类似于Microsoft Office! 与Microsoft Office提供的文档格式(包括PPT,DOC,DOCX,XLS和XLSX)完全兼容性。WPS的个人版是供个..._wps office 2016 for linux

python 偏最小二乘回归实现-程序员宅基地

文章浏览阅读8k次,点赞8次,收藏95次。用自己数据实现偏最小二乘回归。用Hitters数据集做演示如何使用自己的数据实现偏最小二乘回归。 此数据集有322个运动员的20个变量的数据, 其中的变量Salary(工资)是我们关心的。数据下载百度网盘链接:https://pan.baidu.com/s/13pb7VN_kTzV0hUEsg-1S1A提取码:3333import pandas as pdimport numpy as npfrom sklearn.cross_decomposition import PLSRegression_python 偏最小二乘回归

Java基础---数据类型、类型转换、字符串 基础-程序员宅基地

文章浏览阅读368次,点赞7次,收藏8次。记住常用的基本数据类型int,double熟悉位数: byte8位,int 32位等等记住特性: long需要加L,flaot需要加F,char必须是单引号且只有一个2.1类型转换数据类型转换, 即 它们之间可以变换.2.1.1默认转换按照数据的表示范围, 小范围向大范围转换,可以默认进行// 类型转换默认进行(小转大)long b = a;2.1.2强制转换通过强制转换,可以将数据转换过去,但是有可能丢失精度口诀: 小转大默认进行,大转小强制进行3.1字符串。

uniapp h5后台地址配置_uniapp配置后台ip-程序员宅基地

文章浏览阅读2.5k次。"h5" : { "sdkConfigs" : { "maps" : {} }, "router" : { "base" : "./" }, "devServer" : { "port" : 8080, "disableHostCheck" : true, "proxy" : { ..._uniapp配置后台ip

centos7日志文件_CentOS7的journalctl日志查看方法-程序员宅基地

文章浏览阅读1k次。1、概述日志管理工具journalctl是centos7上专有的日志管理工具,该工具是从message这个文件里读取信息。Systemd统一管理所有Unit的启动日志。带来的好处就是,可以只用journalctl一个命令,查看所有日志(内核日志和应用日志)。日志的配置文件是/etc/systemd/journald.conf。2、查看所有日志(默认情况下 ,只保存本次启动的日志)[root@CEN..._journalctl -b 0

Spring Boot 注入静态成员变量_静态成员变量怎么注入-程序员宅基地

文章浏览阅读535次。前言: 在属性被 static 修饰后,Spring 便不能直接对变量进行直接注入,这是因为被 static 修饰后,会被放到常量池中,而Spring 需要使用set方法进行注入,这是就需要我们手动进行配置注入成员变量第一步:在类上添加@Component注解,让Spring扫描到这个类第二步:为成员变量添加set方法,注意去掉static关键字,否则会导致注入失败第三步:在set方法上添加@Resource注解,告诉Spring自动注入这个方法/** * @author: mi_静态成员变量怎么注入

推荐文章

热门文章

相关标签