再见 Dockerfile,是时候拥抱下一代新型镜像构建技术 Buildpacks 了-程序员宅基地

技术标签: python  linux  编程语言  大数据  docker  

公众号关注 「奇妙的 Linux 世界」

设为「星标」,每天带你玩转 Linux !

75295450e5cdd40c821874a06f10c312.png

云原生正在吞并软件世界,容器改变了传统的应用开发模式,如今研发人员不仅要构建应用,还要使用 Dockerfile 来完成应用的容器化,将应用及其依赖关系打包,从而获得更可靠的产品,提高研发效率。

随着项目的迭代,达到一定的规模后,就需要运维团队和研发团队之间相互协作。运维团队的视角与研发团队不同,他们对镜像的需求是安全标准化。比如:

  • 不同的应用应该选择哪种基础镜像?

  • 应用的依赖有哪些版本?

  • 应用需要暴露的端口有哪些?

为了优化运维效率,提高应用安全性,研发人员需要不断更新 Dockerfile 来实现上述目标。同时运维团队也会干预镜像的构建,如果基础镜像中有 CVE 被修复了,运维团队就需要更新 Dockerfile,使用较新版本的基础镜像。总之,运维与研发都需要干预 Dockerfile,无法实现解耦。

为了解决这一系列的问题,涌现出了更加优秀的产品来构建镜像,其中就包括 Cloud Native Buildpacks[1] (СNB)。CNB 基于模块化提供了一种更加快速、安全、可靠的方式来构建符合 OCI 规范的镜像,实现了研发与运维团队之间的解耦。

在介绍 CNB 之前,我们先来阐述几个基本概念。

符合 OCI 规范的镜像

如今,容器运行时早就不是 Docker 一家独大了。为了确保所有的容器运行时都能运行任何构建工具生成的镜像,Linux 基金会与 Google,华为,惠普,IBM,Docker,Red Hat,VMware 等公司共同宣布成立开放容器项目(OCP),后更名为开放容器倡议(OCI)[2]。OCI 定义了围绕容器镜像格式和运行时的行业标准,给定一个 OCI 镜像,任何实现 OCI 运行时标准[3]的容器运行时都可以使用该镜像运行容器。

如果你要问 Docker 镜像与 OCI 镜像之间有什么区别,如今的答案是:几乎没有区别。有一部分旧的 Docker 镜像在 OCI 规范之前就已经存在了,它们被称为 Docker v1 规范,与 Docker v2 规范是不兼容的。而 Docker v2 规范捐给了 OCI,构成了 OCI 规范的基础。如今所有的容器镜像仓库、Kubernetes 平台和容器运行时都是围绕 OCI 规范建立的。

什么是 Buildpacks

Buildpacks 项目最早由 Heroku 在 2011 年发起, 被以 Cloud Foundry 为代表的 PaaS 平台广泛采用。

一个 buildpack 指的就是一个将源代码变成 PaaS 平台可运行的压缩包的程序,通常情况下,每个 buildpack 封装了单一的语言生态系统的工具链,例如 Ruby、Go、NodeJs、Java、Python 等都有专门的 buildpack。

你可以将 buildpack 理解成一坨脚本,这坨脚本的作用是将应用的可执行文件及其依赖的环境、配置、启动脚本等打包,然后上传到 Git 等仓库中,打好的压缩包被称为 droplet

然后 Cloud Foundry 会通过调度器选择一个可以运行这个应用的虚拟机,然后通知这个机器上的 Agent 下载应用压缩包,按照 buildpack 指定的启动命令,启动应用。

到了 2018 年 1 月,Pivotal 和 Heroku 联合发起了 Cloud Native Buildpacks(CNB)[4] 项目,并在同年 10 月让这个项目进入了 CNCF

539783d2feef67462ea16eabf3d0e01d.png

2020 年 11 月,CNCF 技术监督委员会(TOC)投票决定将 CNB 从沙箱项目晋升为孵化项目[5]。是时候好好研究一下 CNB 了。

为什么需要 Cloud Native Buildpacks

Cloud Native Buildpacks(CNB) 可以看成是基于云原生的 Buildpacks 技术,它支持现代语言生态系统,对开发者屏蔽了应用构建、部署的细节,如选用哪种操作系统、编写适应镜像操作系统的处理脚本、优化镜像大小等等,并且会产出 OCI 容器镜像,可以运行在任何兼容 OCI 镜像标准的集群中。CNB 还拥抱了很多更加云原生的特性,例如跨镜像仓库的 blob 挂载和镜像层级 rebasing[6]

由此可见 CNB 的镜像构建方式更加标准化、自动化,与 Dockerfile 相比,Buildpacks 为构建应用提供了更高层次的抽象,Buildpacks 对 OCI 镜像构建的抽象,就类似于 Helm 对 Deployment 编排的抽象

2020 年 10 月,Google Cloud 开始宣布全面支持 Buildpacks,包含 Cloud Run、Anthos 和 Google Kubernetes Engine (GKE)。目前 IBM Cloud、Heroku 和 Pivital 等公司皆已采用 Buildpacks,如果不出意外,其他云供应商很快就会效仿。

Buildpacks 的优点:

  • 针对同一构建目的的应用,不用重复编写构建文件(只需要使用一个 Builder)。

  • 不依赖 Dockerfile。

  • 可以根据丰富的元数据信息(buildpack.toml)轻松地检查到每一层(buildpacks)的工作内容。

  • 在更换了底层操作系统之后,不需要重新改写镜像构建过程。

  • 保证应用构建的安全性和合规性,而无需开发者干预。

10796f49a6ebbf83a8eee7b4dfd3d6cf.png

Buildpacks 社区还给出了一个表格来对比同类应用打包工具:

c2bac3e2ef62d86948ca5cd03c3c0446.png

可以看到 Buildpacks 与其他打包工具相比,支持的功能更多,包括:缓存、源代码检测、插件化、支持 rebase、重用、CI/CD 多种生态。

Cloud Native Buildpacks 工作原理

Cloud Native Buildpacks 主要由 3 个组件组成:BuilderBuildpack 和 Stack

Buildpack

Buildpack 本质是一个可执行单元的集合,一般包括检查程序源代码、构建代码、生成镜像等。一个典型的 Buildpack 需要包含以下三个文件:

  • buildpack.toml – 提供 buildpack 的元数据信息。

  • bin/detect – 检测是否应该执行这个 buildpack。

  • bin/build – 执行 buildpack 的构建逻辑,最终生成镜像。

Builder

Buildpacks 会通过“检测”、“构建”、“输出”三个动作完成一个构建逻辑。通常为了完成一个应用的构建,我们会使用到多个 Buildpacks,那么 Builder 就是一个构建逻辑的集合,包含了构建所需要的所有组件和运行环境的镜像。

我们通过一个假设的流水线来尝试理解 Builder 的工作原理:

f6b3a025ff50a3189fb98b15e4df2e83.png
  • 最初,我们作为应用的开发者,准备了一份应用源代码,这里我们将其标识为 “0”。

  • 然后应用 “0” 来到了第一道工序,我们使用 Buildpacks1 对其进行加工。在这个工序中,Buildpacks1 会检查应用是否具有 “0” 标识,如果有,则进入构建过程,即为应用标识添加 “1”,使应用标识变更为 “01”。

  • 同理,第二道、第三道工序也会根据自身的准入条件判断是否需要执行各自的构建逻辑。

在这个例子中,应用满足了三道工序的准入条件,所以最终输出的 OCI 镜像的内容为 “01234” 的标识。

对应到 Buildpacks 的概念中,Builders 就是 Buildpacks 的有序组合,包含一个基础镜像叫 build image、一个 lifecycle 和对另一个基础镜像 run image 的应用。Builders 负责将应用源代码构建成应用镜像(app image)。

0f8f0e0ba1c1ef3b6ee843236d529993.png

build image 为 Builders 提供基础环境(例如 带有构建工具的 Ubuntu Bionic OS 镜像),而 run image 在运行时为应用镜像(app image)提供基础环境。build image 和 run image 的组合被称为 Stack[7]

Stack

上面提到,build image 和 run image 的组合被称为 Stack,也就是说,它定义了 Buildpacks 的执行环境和最终应用的基础镜像。

你可以将 build image 理解为 Dockerfile 多阶段构建中第一阶段的 base 镜像,将 run image 理解为第二阶段的 base 镜像。


上述 3 个组件都是以 Docker 镜像的形式存在,并且提供了非常灵活的配置选项,还拥有控制所生成镜像的每一个 layer 的能力。结合其强大的 caching[8] 和 rebasing[9] 能力,定制的组件镜像可以被多个应用重复利用,并且每一个 layer 都可以根据需要单独更新。


Lifecycle 是 Builder 中最重要的概念,它将由应用源代码到镜像的构建步骤抽象出来,完成了对整个过程的编排,并最终产出应用镜像。下面我们单独用一个章节来介绍 Lifecycle。

构建生命周期(Lifecyle)

Lifecycle 将所有 Buildpacks 的探测、构建过程抽离出来,分成两个大的步骤聚合执行:Detect 和 Build。这样一来就降低了 Lifecycle 的架构复杂度,便于实现自定义的 Builder。

除了 Detect 和 Build 这两个主要步骤,Lifecycle 还包含了一些额外的步骤,我们一起来解读。

Detect

我们之前提到,在 Buildpack 中包含了一个用于探测的 /bin/detect 文件,那么在 Detect 过程中,Lifecycle 会指导所有 Buildpacks 中的 /bin/detect 按顺序执行,并从中获取执行结果。

那么 Lifecycle 把 Detect 和 Build 分开后,又是怎么维系这两个过程中的关联关系呢?

Buildpacks 在 Detect 和 Build 阶段,通常都会告知在自己这个过程中会需要哪些前提,以及自己会提供哪些结果。

e0b72438dcee07a05b5487f0a5473b7d.png

在 Lifecycle 中,提供了一个叫做 Build Plan 的结构体用于存放每个 Buildpack 的所需物和产出物。

type BuildPlanEntry struct {
    Providers `toml:“providers”`
    Requires  `toml:"requires"`

同时,Lifecycle 也规定,只有当所有产出物都匹配有一个对应的所需物时,这些 Buildpacks 才能组合成一个 Builder。

Analysis

Buildpacks 在运行中会创建一些目录,在 Lifecycle 中这些目录被称为 layer。那么为了这些 layer 中,有一些是可以作为缓存提供给下一个 Buildpacks 使用的,有一些则是需要在应用运行时起作用的,还有的则是需要被清理掉。怎么才能更灵活地控制这些 layer ?

Lifecycle 提供了三个开关参数,用于表示每一个 layer 期望的处理方式:

  • launch 表示这个 layer 是否将在应用运行时起作用。

  • build 表示这个 layer 是否将在后续的构建过程中被访问。

  • cache 则表示这个 layer 是否将作为缓存。

之后,Lifecycle 再根据一个关系矩阵来判断 layer 的最终归宿。我们也可以简单的理解为,Analysis 阶段为构建、应用运行提供了缓存

264b908d6fc4595deed6e9d0b1991e1c.png
Build

Build 阶段会利用 Detect 阶段产出的 build plan,以及环境中的元数据信息,配合保留至本阶段的 layers,对应用源码执行 Buildpacks 中的构建逻辑。最终生成可运行的应用工件。

5e35bbb9d896957af019d3fca70dcd06.png
Export

Export 阶段比较好理解,在完成了上述构建之后,我们需要将最后的构建结果产出为一个 OCI 标准镜像,这样一来,这个 App 工件就可以运行在任何兼容 OCI 标准的集群中。

f2110e849366843880dae89ddadad534.png
Rebase

在 CNB 的设计中,最后 app 工件实际是运行在 stack 的 run image 之上的。可以理解为 run image 以上的工件是一个整体,它与 run image 以 ABI(application binary interface) 的形式对接,这就使得这个工件可以灵活切换到另一个 run image 上。

这个动作其实也是 Lifecycle 的一部分,叫做 rebase。在构建镜像的过程中也有一次 rebase,发生在 app 工件由 build image 切换到 run image 上。

ef6fb37230d2ac5bc995b7d75acea03b.png

这种机制也是 CNB 对比 Dockerfile 最具优势的地方。比如在一个大型的生产环境中,如果容器镜像的 OS 层出现问题,需要更换镜像的 OS 层,那么针对不同类型的应用镜像就需要重写他们的 dockerfile 并验证新的 dockerfile 是否可行,以及新增加的层与已存在的层之间是否有冲突,等等。而使用 CNB 只需要做一次 rebase 即可,简化了大规模生产中镜像的升级工作。


以上就是关于 CNB 构建镜像的流程分析,总结来说:

  • Buildpacks 是最小构建单元,执行具体的构建操作;

  • Lifecycle 是 CNB 提供的镜像构建生命周期接口;

  • Builder 是若干 Buildpacks 加上 Lifecycle 以及 stack 形成的具备特定构建目的的构建器。

6532c7b4a32e3243a6264dad992cc3c7.png

再精减一下:

  • build image + run image = stack

  • stack(build image) + buildpacks + lifecycle = builder

  • stack(run image) + app artifacts = app

那么现在问题来了,这个工具怎么使用呢?

Platform

这时候就需要一个 Platform,Platform 其实是 Lifecycle 的执行者。它的作用是将 Builder 作用于给定的源代码上,完成 Lifecycle 的指令。

29b19dc94ac53d7afa83268b077f097b.png

在这个过程中,Builder 会将源代码构建为 app,这个时候 app 是在 build image 中的。这个时候根据 Lifecycle 中的 rebase 接口,底层逻辑是用 ABI(application binary interface)[10] 将 app 工件从 build image 转换到 run image 上。这就是最后的 OCI 镜像。

常用的 Platform 有 Tekton 和 CNB 的 Pack[11]。接下来我们将使用 Pack 来体验如何使用 Buildpacks 构建镜像。

安装 Pack CLI 工具

目前 Pack CLI 支持 Linux、MacOS 和 Windows 平台,以 Ubuntu 为例,安装命令如下:

$ sudo add-apt-repository ppa:cncf-buildpacks/pack-cli
$ sudo apt-get update
$ sudo apt-get install pack-cli

查看版本:

$ pack version
0.22.0+git-26d8c5c.build-2970

注意:在使用 Pack 之前,需要先安装并运行 Docker。

目前 Pack CLI 只支持 Docker,不支持其他容器运行时(比如 Containerd 等)。但 Podman 可以通过一些 hack 来变相支持,以 Ubuntu 为例,大概步骤如下:

先安装 podman。

$ . /etc/os-release
$ echo "deb https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/xUbuntu_${VERSION_ID}/ /" | sudo tee /etc/apt/sources.list.d/devel:kubic:libcontainers:stable.list
$ curl -L "https://download.opensuse.org/repositories/devel:/kubic:/libcontainers:/stable/xUbuntu_${VERSION_ID}/Release.key" | sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get -y upgrade
$ sudo apt-get -y install podman

然后启用 Podman Socket。

$ systemctl enable --user podman.socket
$ systemctl start --user podman.socket

指定 DOCKER_HOST 环境变量。

$ export DOCKER_HOST="unix://$(podman info -f "{
    {.Host.RemoteSocket.Path}}")"

最终就可以实现在 Podman 容器运行时中使用 Pack 来构建镜像。详细配置步骤可参考 Buildpacks 官方文档[12]

使用 Pack 构建 OCI 镜像

安装完 Pack 之后,我们可以通过 CNB 官方提供的 samples[13] 加深对 Buildpacks 原理的理解。这是一个 Java 示例,构建过程中无需安装 JDK、运行 Maven 或其他构建环境,Buildpacks 会为我们处理好这些。

首先克隆示例仓库:

$ git clone https://github.com/buildpacks/samples.git

后面我们将使用 bionic 这个 Builder 来构建镜像,先来看下该 Builder 的配置:

$ cat samples/builders/bionic/builder.toml
# Buildpacks to include in builder
[[buildpacks]]
id = "samples/java-maven"
version = "0.0.1"
uri = "../../buildpacks/java-maven"

[[buildpacks]]
id = "samples/kotlin-gradle"
version = "0.0.1"
uri = "../../buildpacks/kotlin-gradle"

[[buildpacks]]
id = "samples/ruby-bundler"
version = "0.0.1"
uri = "../../buildpacks/ruby-bundler"

[[buildpacks]]
uri = "docker://cnbs/sample-package:hello-universe"

# Order used for detection
[[order]]
[[order.group]]
id = "samples/java-maven"
version = "0.0.1"

[[order]]
[[order.group]]
id = "samples/kotlin-gradle"
version = "0.0.1"

[[order]]
[[order.group]]
id = "samples/ruby-bundler"
version = "0.0.1"

[[order]]
[[order.group]]
id = "samples/hello-universe"
version = "0.0.1"

# Stack that will be used by the builder
[stack]
id = "io.buildpacks.samples.stacks.bionic"
run-image = "cnbs/sample-stack-run:bionic"
build-image = "cnbs/sample-stack-build:bionic"

builder.toml 文件中完成了对 Builder 的定义,配置结构可以划分为 3 个部分:

  • [[buildpacks]] 语法标识用于定义 Builder 所包含的 Buildpacks。

  • [[order]] 用于定义 Builder 所包含的 Buildpacks 的执行顺序。

  • [[stack]] 用于定义 Builder 将运行在哪个基础环境之上。

我们可以使用这个 builder.toml 来构建自己的 builder 镜像:

$ cd samples/builders/bionic

$ pack builder create cnbs/sample-builder:bionic --config builder.toml
284055322776: Already exists
5b7c18d5e17c: Already exists
8a0af02bbad1: Already exists
0aa0fb9222a5: Download complete
3d56f4bc2c9a: Already exists
5b7c18d5e17c: Already exists
284055322776: Already exists
8a0af02bbad1: Already exists
a967314b5694: Already exists
a00d148009e5: Already exists
dbb2c49b44e3: Download complete
53a52c7f9926: Download complete
0cceee8a8cb0: Download complete
c238db6a02a5: Download complete
e925caa83f18: Download complete
Successfully created builder image cnbs/sample-builder:bionic
Tip: Run pack build <image-name> --builder cnbs/sample-builder:bionic to use this builder

接着,进入 samples/apps 目录,使用 pack 工具和 builder 镜像,完成应用的构建。当构建成功后,会产出一个名为 sample-app 的 OCI 镜像。

$ cd ../..
$ pack build --path apps/java-maven --builder cnbs/sample-builder:bionic sample-app

最后使用 Docker 运行这个 sample-app 镜像:

$ docker run -it -p 8080:8080 sample-app

访问 http://localhost:8080,如果一切正常,你可以在浏览器中看见如下的界面:

52d6c503b727d819da24c1d2405d74d1.png

现在我们再来观察一下之前构建的镜像:

$ docker images
REPOSITORY                               TAG              IMAGE ID       CREATED        SIZE
cnbs/sample-package                      hello-universe   e925caa83f18   42 years ago   4.65kB
sample-app                               latest           7867e21a60cd   42 years ago   300MB
cnbs/sample-builder                      bionic           83509780fa67   42 years ago   181MB
buildpacksio/lifecycle                   0.13.1           76412e6be4e1   42 years ago   16.4MB

镜像的创建时间竟然都是固定的时间戳:42 years ago。这是为什么呢?如果时间戳不固定,每次构建镜像的 hash 值都是不同的,一旦 hash 值不一样,就不太容易判断镜像的内容是否相同了。使用固定的时间戳,就可以重复利用之前的构建过程中创建的 layers。

总结

Cloud Native Buildpacks 代表了现代软件开发的一个重大进步,在大部分场景下相对于 Dockerfile 的好处是立杆见影的。虽然大型企业需要投入精力重新调整 CI/CD 流程或编写自定义 Builder,但从长远来看可以节省大量的时间和维护成本。

本文介绍了 Cloud Native Buildpacks(CNB) 的起源以及相对于其他工具的优势,并详细阐述了 CNB 的工作原理,最后通过一个简单的示例来体验如何使用 CNB 构建镜像。后续的文章将会介绍如何创建自定义的 Builder、Buildpack、Stack,以及函数计算平台(例如,OpenFunction[14]、Google Cloud Functions)如何利用 CNB 提供的 S2I 能力,实现从用户的函数代码到最终应用的转换过程。

引用链接

[1]

Cloud Native Buildpacks: https://buildpacks.io/

[2]

开放容器倡议(OCI): https://opencontainers.org/

[3]

OCI 运行时标准: https://github.com/opencontainers/runtime-spec

[4]

Cloud Native Buildpacks(CNB): https://buildpacks.io/

[5]

投票决定将 CNB 从沙箱项目晋升为孵化项目: https://www.cncf.io/blog/2020/11/18/toc-approves-cloud-native-buildpacks-from-sandbox-to-incubation/

[6]

跨镜像仓库的 blob 挂载和镜像层级 rebasing: https://docs.docker.com/registry/spec/api/

[7]

Stack: https://buildpacks.io/docs/concepts/components/stack

[8]

caching: https://buildpacks.io/docs/app-developer-guide/using-cache-image/

[9]

rebasing: https://buildpacks.io/docs/concepts/operations/rebase/

[10]

ABI(application binary interface): https://en.wikipedia.org/wiki/Application_binary_interface

[11]

Pack: https://buildpacks.io/docs/tools/pack/

[12]

Buildpacks 官方文档: https://buildpacks.io/docs/app-developer-guide/building-on-podman/

[13]

samples: https://github.com/buildpacks/samples

[14]

OpenFunction: https://github.com/OpenFunction/OpenFunction/

本文转载自:「KubeSphere云原生」,原文:https://tinyurl.com/jpw9m67e,版权归原作者所有。欢迎投稿,投稿邮箱: [email protected]

87caa3460dba75fe192d09e3e3c6944f.gif

9141c8a184624e2201ee0819d4b90d56.png

你可能还喜欢

点击下方图片即可阅读

25025e53f91d3a787a61e4da032da415.png

Colima:Docker Desktop for Mac 的免费替代品,轻松管理容器和 K8s(支持 M1 芯片)

08c6f1232a3a2b5298915bbd11b39581.png
点击上方图片,『美团|饿了么』外卖红包天天免费领

ea91cc8c97f3bc83d42ae22d2d2ec980.png

更多有趣的互联网新鲜事,关注「奇妙的互联网」视频号全了解!

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/easylife206/article/details/123219752

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线

推荐文章

热门文章

相关标签