MV-YOLO: Motion Vector-aided Tracking by Semantic Object Detection论文解读_video object tracking in the compressed domain usi-程序员宅基地

技术标签: 深度学习/机器学习  计算机视觉  YOLO v3  MV-YOLO  HEVC  深度学习【理论+实践】  Tiny-YOLO  

论文题目:MV-YOLO: Motion Vector-aided Tracking by Semantic Object Detection

论文发布时间:CVPR 2018.6

论文下载地址:https://arxiv.org/abs/1805.00107


摘要——目标跟踪是许多视觉分析系统的基石。虽然最近几年在该领域已经取得了相当大进展,但要想实现现实视频中目标的鲁棒,高效和高精度的跟踪仍是个挑战。本文我们提出了一种混合跟踪器,它利用了压缩视频流中的运动信息以及一种通用语义分割目标检测器,将该混合跟踪器作用于解码得到的帧图像中来构建快速和高效的跟踪引擎。本文提出的方法与近些年在OTB跟踪数据集上的跟踪器做过对比,结果表明本文方法在速度和精度上有优势。该方法的其他可取的特性是它的简单性和部署效率,这是因为它重用了因其他原因存在于系统中的资源和信息。

索引——目标跟踪,语义分割,运动矢量,感兴趣区域


I. INTRODUCTION

现有跟踪方法可通过多种方式进行分类。对于本研究而言,根据输入数据域来划分是有用的:像素域,压缩域,以及两者混合。像素域的跟踪器是当下研究较广和较好的。许多成功的跟踪方法是基于像素域的,例如基于相关滤波correlation filters的(例如:[1] M. Danelljan, G. Hger, F. S. Khan, and M. Felsberg, “Discriminative scale space tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 8, pp. 1561–1575, Aug 2017),基于学习的深度特征(例如:[2] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning discriminative saliency map with convolutional neural network,” in Proc.ICML’15, 2015, pp. 597–606.;[3] D. Gordon, A. Farhadi, and D. Fox, “Re3: Real-time recurrent regression networks for visual tracking of generic objects,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 788–795, April 2018.)这类方法的优势是它们具有高精确度的潜力且它们视频编解码时实现方式未知

第二类跟踪器作用于压缩域数据,只对视频流进行部分解码。在很多应用领域证明压缩域的数据携带有价值的信息,例如人脸检测(例如:[4] S. R. Alvar, H. Choi, and I. V. Bajic, “Can you tell a face from a HEVC ´bitstream?,” in Proc. IEEE MIPR’18, Apr. 2018.)和定位(例如:[5] S. R. Alvar, H. Choi, and I. V. Bajic, “Can you find a face in a HEVC ´bitstream?,” in Proc. IEEE ICASSP’18, Apr. 2018.),运动分割(例如:[6] Y. M. Chen, I. V. Bajic, and P. Saeedi, “Moving region segmentation from compressed video using global motion estimation and Markov random fields,” IEEE Trans. Multimedia, vol. 13, pp. 421–431, 2011.
),以及目标分割跟踪(例如:[7] S. H. Khatoonabadi and I. V. Bajic, “Video object tracking in the compressed domain using spatio-temporal Markov random fields,” IEEE Trans. Image Processing, vol. 22, no. 1, pp. 300–313, Jan. 2013.  [8] L. Zhao, Z. He, W. Cao, and D. Zhao, “Real-time moving object segmentation and classification from HEVC compressed surveillance video,” IEEE Trans. Circuits Syst. Video Technol., 2018, to appear)。文章([6] Y. M. Chen, I. V. Bajic, and P. Saeedi, “Moving region segmentation from compressed video using global motion estimation and Markov random fields,” IEEE Trans. Multimedia, vol. 13, pp. 421–431, 2011.  [7] S. H. Khatoonabadi and I. V. Bajic, “Video object tracking in the compressed domain using spatio-temporal Markov random fields,” IEEE Trans. Image Processing, vol. 22, no. 1, pp. 300–313, Jan. 2013.  [8] L. Zhao, Z. He, W. Cao, and D. Zhao, “Real-time moving object segmentation and classification from HEVC compressed surveillance video,” IEEE Trans. Circuits Syst. Video Technol., 2018, to appear.)研究得出的关键信息是:运动矢量(MVs)相关编码语法元素是场景中目标运动很好的指示器。  由于这些信息在视频流中已经存在,因此利用这些信息来做跟踪显得很自然。压缩域跟踪器的优点包括效率和速度,因为该方法避开了大多数的视频解码,像素值存储和处理,并且通常对较少的输入数据做处理。但该方法的缺点是依赖于视频编码方法(该编码方法用于压缩视频),以及潜在的低的精度,受限于低精度的运动采样网格:通常,一个MV(运动矢量)分配在一个大小为4x4或更大的块/单元中。 

第三类跟踪器属于混合类方法,结合了压缩域和像素域数据。这种方法的一个例子是([9] S. Gl, J. T. Meyer, C. Hellge, T. Schierl, and W. Samek, “Hybrid video object tracking in H.265/HEVC video streams,” in Proc. IEEE MMSP’16, Sept 2016, pp. 1–5. ),它通过结合从高效视频编码(HEVC)位流中提取的MVs(运动矢量)和boloc coding modes(块编码模式)混合作为跟踪器,并从内部帧中获取的颜色信息。

 

本文提出的也属于混合类方法,将解码的MVs在完全解码的帧上做语义目标检测操作相结合。基本想法是,MVs已经存在于压缩视频流中,它足够好来指示目标对象的近似位置。语义目标检测器通过在解码的帧上提供像素精度的边界框来改进目标的位置。这种two-stage跟踪(先近似后改进精度)思路已经在最近的两项研究中提出过,分别是并行跟踪与验证(PTAV)和ROLO([10] H. Fan and H. Ling, “Parallel tracking and verifying: A framework for real-time and high accuracy visual tracking,” in Proc. IEEE ICCV’17, Oct 2017, pp. 5487–5495. [11] G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang, C. Cai, and Z. He, “Spatially supervised recurrent convolutional neural networks for visual object tracking,” in Proc. ISCAS’17, May 2017, pp. 1–4. ),但是这两项工作都是基于像素域的跟踪器,而我们的是首个混合类的方法。其中PTAV第一阶段用快速但精度较小的像素域跟踪器,第二阶段用基于VGGNet的Sizmese network(孪生网络); 其中ROLO的第一阶段的近似是用YOLO目标检测器,而第二阶段的修正是用LSTM网络。([12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. [13] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proc. IEEE CVPR’16, Jun. 2016, pp. 779–788. ) 


II. PROPOSED METHOD

本文提出的跟踪框架见Fig.1.我们称其为MV-aided YOLO(运动矢量辅助的YOLO),简称为MV-YOLO。初始,目标近似位置是基于当前帧间编码帧上的MVs和之前帧上目标位置而构造的。(个人解读初始的操作就是将前一帧获得的目标位置和当前帧上的目标会形成运动矢量,类似光流)。将初始构造的近似位置作为ROI区域(图一上红框)。同时,解码的当前帧也会通过一个语义目标检测器(文中用的是YOLO),该检测器会检测帧中多种目标的位置ROI会作为多种目标位置中选取目标对象的参考位置。

A. ROI creation

基于给定前一帧t-1上目标位置,ROI 构造器会利用HEVC位流产生的MVs来构造当前帧t上目标的近似位置。这个过程相对较简单。在帧解码期间,从HEVC位流中读取帧t上的MVs。与MV相关联的PU一同分配给所有像素。然后,若MV指代为帧t-1上目标位置的话,将其所在的像素标记为ROI-像素。最后,选取包含所有ROI-像素的矩形框作为ROI,这个框需要与x,y轴平行(就是说没有倾斜的)。这一过程可见Fig.2.,其中帧t上的ROI用红色显示,帧t到帧t-1上产生的MVs以黄色显示。

 

虽然ROI构造的基本思路非常直观,但是这过程中一些技术难点仍需解决。技术难点包括没有MVs的PUs(例如SKIP和intra-coded PUs),MVs不指向t-1帧,以及部分精确的MVs。这些挑战中,SKIP PUs最易解决。由于跳帧模式(SKIP mode)表明相应的PU几乎与之前帧中对应公共定位区域几乎完全相同,因此将零运动矢量(zero MV)分配给每个SKIP PU。

将有意义的运动分配到内部编码PUs中相对有些复杂,因为编码器选择的内部模式表明潜在的运动太过复杂而无法被传统的运动补偿所利用。对于这样的PUs,我们在同个Coding Tree Unit(CTU)中收集所有相邻近内部编码PUs的MVs,然后用Polar Vector Median(PVM)(我理解为极向量媒介)来为这样的PUs提供合适的MV。特别地,令 V=(v1,v2,...,vn)为PUs邻近的MVs列表,按照矢量与水平轴夹角大小来排序。然后,选取一个来自V的连续向量子列表 m=\left \lfloor(n+1)/2 \right \rfloor 来最小化向量角度差只和。选取的组为(vk,vk+1,...,vk+m-1)其中的k为\left ( vk_{},vk+1_{},...,vk+m-1_{} \right ) ,其中的k为:

PVM向量的角度和幅值设置见公式(2)。最后,帧t中的指向非t-1帧的MVs会按比例缩小(假设连续运动),这样他们缩放后指向了帧t-1,与文章[7]相似。部分精度 MVs的一些成分被四舍五入到最近整数。

B. Object detection

语义目标检测指在图像中寻找目标位置,并根据他们的类型对目标进行分类,例如,人,车,狗……任一目标检测器都可用在我们图1的框架中。然而根据经验,我们选择三个较流行的YOLO检测器:YOLO v3, YOLO v2, Tiny YOLO(其较YOLO v2来说更精简与快速,尽管精度有所下降)。[[14] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.  [15] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in IEEE CVPR, July 2017, pp. 6517–6525. ]。

待跟踪目标的初始位置已经在视频序列的第一帧中已经指明。然后我们的跟踪器试着推断目标类别,这步是在视频序列前5帧中通过目标检测器来进行的。每帧图像,目标检测器会输出很多带有高置信度的目标类别的框。每帧中,检测到的框拥有与真实目标最大的IOU,同时记录下框选目标的类别。在这些对象类中出现最频繁类即是我们所要跟踪的对象。(个人理解是前几帧,每帧推断结果可能有出入,因此选取出现频次较高的作为真实预测类别)。

当目标的类别推断出后,时刻t的帧图像送进目标检测器,会输出N个Boxes , B = {B1,...,BN} ,这些框带有目标位置,目标类别,以及置信度得分。从这N个框中,我们删除那些与我们跟踪目标类别不符的框。之后会得到M个框,重新标记为, B_hat = {B1_hat,...,BM_hat}, 在最后决策阶段会用到这M个框。

本文提出的跟踪框架依赖于语义(目标类别)来消除帧中一些不相关的目标/框。原则上,语义信息应当在目标遮挡或多目标跟踪等较难情况下提供帮助。然而,即使非语义检测器(不输出目标类别)也能运用在我们的框架中,但是由于出现大量的不相关的框(即不同类别)和最后阶段出现决策错误的潜在可能性,这将影响精度。(作者的意思建议使用带目标类别预测的检测器)。

C. Final box decision(算法重点思想,个人觉得可借鉴

当目标检测器输出一系列的框\widehat{B},与目标相对应的框必须被识别。这步是通过利用第一阶段找到的ROI来进行的。在\widehat{B} 的框中,与ROI有最大IOU的作为较好的候选目标框。然而,即使是最高IOU也可能重合度非常小。因此,我们将最高的IOU与自适应阈值做比较来得到最终的决策。具体的细节见算法1.

IOU计算公式如下:

算法1中的自适应阈值TIOU 会根据之前帧中IOU的值做更改。算法1中第10-18行为自适应阈值调整,设计来帮助解决这种情形:目标检测器在检测目标物时出现失败,但自适应阈值可用来检测周围的目标(个人理解就是YOLO检测的时候不可能每帧都能正确检测出,本人实际验证过,可利用历史信息来推断周边目标存在情况),当然该自适应阈值调整也能用在遮挡情形。这种情况下,目标检测器提供的boxes与之前帧中的目标的IOU出现不匹配情况,因此我们不会选取检测器的box,我们会将之前帧目标位置作为当前帧最终的box  \widetilde{B}位置(见算法1中第17行)。但是,若不匹配情况继续出现,那么IOU接受度阈值将减小(这是由于算法1中第18行,TReduction增大)。最终,由于较低的IOU接受度阈值(算法1中第10行)会使得检测到的框能够被接受作为最终的\widetilde{B}位置。(俗话些讲就是,长期达不到设置的IOU阈值的框,我就给IOU阈值调整的小些,算法会怀疑我之前的位置信息可信任度变低,因为误差总会累积的)。

D. Summary

总结下提出的跟踪框架的关键特性

与许多对象检测器兼容:我们的跟踪框架的一个优势是不依赖于任何特定的目标检测器。虽然作者使用了三种版本的YOLO,但其他诸如R-CNN,Fast R-CNN, Faster R-CNN,SSD都可以。

资源共享:目标检测器也可用于其他使用。例如,如果检测器防在云端,其他云服务可用它做其他事,如对用户提供的照片做目标检测,即单个深的模型能服务于许多应用。

数据重使用:本文利用MVs来解决跟踪中的运动问题,运动矢量存在于视频流中,对现成视频流数据的使用可加速处理,更具工程意义。

鲁棒性:跟踪的一个难点是外观和尺度变化。许多跟踪器试图明确地对其建模。我们的框架利用基于图像的目标检测器来解决,不受前一帧目标外观储存内容压力的影响。本文跟踪器对外观变化相当鲁棒,举例见图4(b)。


III EXPERIMENTAL RESULTS

A. Experimental setting

从OTB100的100个视频序列中选取30个视频序列用于测试。这些视频序列都包含目标类别,测试视频见表1,用HEVC参考软件HM16.15进行编码,配置参数见 encoder_lowdelay_P_main.cfg   ,它的量化参数QP设置为32。然后运动矢量从压缩的HEVC视频流中提取。

提出的跟踪框架与DSST(VOT 2014挑战赛冠军),CNN-SVMRe3比较,后两种是基于深层神经网络当前具有代表性的跟踪器。在我们的框架中,使用三个版本的YOLO检测器:YOLO v3,YOLO v2和Tiny YOLO(YOLO v2的简化版)。产生的跟踪器分别为MV-YOLO v3, MV-YOLO v2,和MV-Tiny YOLO。检测的阈值分别为:0.1,0.1,0.03。

B. Results

本文用one-pass评估跟踪器。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/c20081052/article/details/81139289

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线

推荐文章

热门文章

相关标签