tf.keras.layers模块中的函数_. 小王同学.的博客-程序员宅基地

技术标签: tensorflow  

from __future__ import print_function as _print_function

import sys as _sys

from . import experimental
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.engine.input_layer import Input
from tensorflow.python.keras.engine.input_layer import InputLayer
from tensorflow.python.keras.engine.input_spec import InputSpec
from tensorflow.python.keras.feature_column.dense_features_v2 import DenseFeatures
from tensorflow.python.keras.layers.advanced_activations import ELU
from tensorflow.python.keras.layers.advanced_activations import LeakyReLU
from tensorflow.python.keras.layers.advanced_activations import PReLU
from tensorflow.python.keras.layers.advanced_activations import ReLU
from tensorflow.python.keras.layers.advanced_activations import Softmax
from tensorflow.python.keras.layers.advanced_activations import ThresholdedReLU
from tensorflow.python.keras.layers.convolutional import Conv1D
from tensorflow.python.keras.layers.convolutional import Conv1D as Convolution1D
from tensorflow.python.keras.layers.convolutional import Conv1DTranspose
from tensorflow.python.keras.layers.convolutional import Conv1DTranspose as Convolution1DTranspose
from tensorflow.python.keras.layers.convolutional import Conv2D
from tensorflow.python.keras.layers.convolutional import Conv2D as Convolution2D
from tensorflow.python.keras.layers.convolutional import Conv2DTranspose
from tensorflow.python.keras.layers.convolutional import Conv2DTranspose as Convolution2DTranspose
from tensorflow.python.keras.layers.convolutional import Conv3D
from tensorflow.python.keras.layers.convolutional import Conv3D as Convolution3D
from tensorflow.python.keras.layers.convolutional import Conv3DTranspose
from tensorflow.python.keras.layers.convolutional import Conv3DTranspose as Convolution3DTranspose
from tensorflow.python.keras.layers.convolutional import Cropping1D
from tensorflow.python.keras.layers.convolutional import Cropping2D
from tensorflow.python.keras.layers.convolutional import Cropping3D
from tensorflow.python.keras.layers.convolutional import DepthwiseConv2D
from tensorflow.python.keras.layers.convolutional import SeparableConv1D
from tensorflow.python.keras.layers.convolutional import SeparableConv1D as SeparableConvolution1D
from tensorflow.python.keras.layers.convolutional import SeparableConv2D
from tensorflow.python.keras.layers.convolutional import SeparableConv2D as SeparableConvolution2D
from tensorflow.python.keras.layers.convolutional import UpSampling1D
from tensorflow.python.keras.layers.convolutional import UpSampling2D
from tensorflow.python.keras.layers.convolutional import UpSampling3D
from tensorflow.python.keras.layers.convolutional import ZeroPadding1D
from tensorflow.python.keras.layers.convolutional import ZeroPadding2D
from tensorflow.python.keras.layers.convolutional import ZeroPadding3D
from tensorflow.python.keras.layers.convolutional_recurrent import ConvLSTM2D
from tensorflow.python.keras.layers.core import Activation
from tensorflow.python.keras.layers.core import ActivityRegularization
from tensorflow.python.keras.layers.core import Dense
from tensorflow.python.keras.layers.core import Dropout
from tensorflow.python.keras.layers.core import Flatten
from tensorflow.python.keras.layers.core import Lambda
from tensorflow.python.keras.layers.core import Masking
from tensorflow.python.keras.layers.core import Permute
from tensorflow.python.keras.layers.core import RepeatVector
from tensorflow.python.keras.layers.core import Reshape
from tensorflow.python.keras.layers.core import SpatialDropout1D
from tensorflow.python.keras.layers.core import SpatialDropout2D
from tensorflow.python.keras.layers.core import SpatialDropout3D
from tensorflow.python.keras.layers.dense_attention import AdditiveAttention
from tensorflow.python.keras.layers.dense_attention import Attention
from tensorflow.python.keras.layers.embeddings import Embedding
from tensorflow.python.keras.layers.local import LocallyConnected1D
from tensorflow.python.keras.layers.local import LocallyConnected2D
from tensorflow.python.keras.layers.merge import Add
from tensorflow.python.keras.layers.merge import Average
from tensorflow.python.keras.layers.merge import Concatenate
from tensorflow.python.keras.layers.merge import Dot
from tensorflow.python.keras.layers.merge import Maximum
from tensorflow.python.keras.layers.merge import Minimum
from tensorflow.python.keras.layers.merge import Multiply
from tensorflow.python.keras.layers.merge import Subtract
from tensorflow.python.keras.layers.merge import add
from tensorflow.python.keras.layers.merge import average
from tensorflow.python.keras.layers.merge import concatenate
from tensorflow.python.keras.layers.merge import dot
from tensorflow.python.keras.layers.merge import maximum
from tensorflow.python.keras.layers.merge import minimum
from tensorflow.python.keras.layers.merge import multiply
from tensorflow.python.keras.layers.merge import subtract
from tensorflow.python.keras.layers.noise import AlphaDropout
from tensorflow.python.keras.layers.noise import GaussianDropout
from tensorflow.python.keras.layers.noise import GaussianNoise
from tensorflow.python.keras.layers.normalization import LayerNormalization
from tensorflow.python.keras.layers.normalization_v2 import BatchNormalization
from tensorflow.python.keras.layers.pooling import AveragePooling1D
from tensorflow.python.keras.layers.pooling import AveragePooling1D as AvgPool1D
from tensorflow.python.keras.layers.pooling import AveragePooling2D
from tensorflow.python.keras.layers.pooling import AveragePooling2D as AvgPool2D
from tensorflow.python.keras.layers.pooling import AveragePooling3D
from tensorflow.python.keras.layers.pooling import AveragePooling3D as AvgPool3D
from tensorflow.python.keras.layers.pooling import GlobalAveragePooling1D
from tensorflow.python.keras.layers.pooling import GlobalAveragePooling1D as GlobalAvgPool1D
from tensorflow.python.keras.layers.pooling import GlobalAveragePooling2D
from tensorflow.python.keras.layers.pooling import GlobalAveragePooling2D as GlobalAvgPool2D
from tensorflow.python.keras.layers.pooling import GlobalAveragePooling3D
from tensorflow.python.keras.layers.pooling import GlobalAveragePooling3D as GlobalAvgPool3D
from tensorflow.python.keras.layers.pooling import GlobalMaxPooling1D
from tensorflow.python.keras.layers.pooling import GlobalMaxPooling1D as GlobalMaxPool1D
from tensorflow.python.keras.layers.pooling import GlobalMaxPooling2D
from tensorflow.python.keras.layers.pooling import GlobalMaxPooling2D as GlobalMaxPool2D
from tensorflow.python.keras.layers.pooling import GlobalMaxPooling3D
from tensorflow.python.keras.layers.pooling import GlobalMaxPooling3D as GlobalMaxPool3D
from tensorflow.python.keras.layers.pooling import MaxPooling1D
from tensorflow.python.keras.layers.pooling import MaxPooling1D as MaxPool1D
from tensorflow.python.keras.layers.pooling import MaxPooling2D
from tensorflow.python.keras.layers.pooling import MaxPooling2D as MaxPool2D
from tensorflow.python.keras.layers.pooling import MaxPooling3D
from tensorflow.python.keras.layers.pooling import MaxPooling3D as MaxPool3D
from tensorflow.python.keras.layers.recurrent import AbstractRNNCell
from tensorflow.python.keras.layers.recurrent import RNN
from tensorflow.python.keras.layers.recurrent import SimpleRNN
from tensorflow.python.keras.layers.recurrent import SimpleRNNCell
from tensorflow.python.keras.layers.recurrent import StackedRNNCells
from tensorflow.python.keras.layers.recurrent_v2 import GRU
from tensorflow.python.keras.layers.recurrent_v2 import GRUCell
from tensorflow.python.keras.layers.recurrent_v2 import LSTM
from tensorflow.python.keras.layers.recurrent_v2 import LSTMCell
from tensorflow.python.keras.layers.serialization import deserialize
from tensorflow.python.keras.layers.serialization import serialize
from tensorflow.python.keras.layers.wrappers import Bidirectional
from tensorflow.python.keras.layers.wrappers import TimeDistributed
from tensorflow.python.keras.layers.wrappers import Wrapper

del _print_function
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_43213895/article/details/108298062

智能推荐

Windows任务栏实现透明_'Wu'的博客-程序员宅基地

Windows 任务栏实现透明化打开注册表CTRL + R输入: regedit 回车输入这个地址计算机\HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Advanced右击新建32位文件命名为:TaskbarAcrylicOpacity编辑文件:使用十进制0-100为 全透明10为不透明重启...

QT/MFC获取控件句柄显示图像_草帽小子Coder的博客-程序员宅基地

MFC中获取句柄显示图像 void ShowImage(IplImage* img, UINT ID) //在picture控件中显示图片的代码{ CDC* pDC=GetDlgItem(ID)->GetDC(); HDC hDC=pDC->GetSafeHdc(); CRect rect; GetDlgItem(ID)->GetClientRect(&am...

基于Xilinx artix 7的FPGA高级应用(一):VGA图像显示(原理篇)_电磁场与无线技术的博客-程序员宅基地

许久没有更新文章,最近天气太热了都无心写代码了有些烦。FPGA基础教学过段时间我会继续写,今天另开一坑:FPGA的高级应用,给大家讲讲串口配置、通信协议、CPU设计这方面的FPGA应用场景,代码完全开源且已经上机实验可以使用,请大家放心观看。...

深度学习领域语义分割常用数据集:PASCAL VOC 2007 ,2012 NYUDv2 SUNRGBD CityScapes CamVid SIFT-Flow 7大数据集介绍_sunrgbd数据集_Keep_Trying_Go的博客-程序员宅基地

深度学习领域语义分割常用数据集:PASCAL VOC 2007 ,2012 NYUDv2 SUNRGBD CityScapes CamVid SIFT-Flow 7大数据集介绍

最大二分匹配中 增广路定义_相门码农的博客-程序员宅基地

增广路的定义(也称增广轨或交错轨):若P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。由增广路的定义可以推出下述三个结论:1-P的路径个数必定为奇数,第一条边和最后一条边都不属于M。2-将M和P进行取反操作可以得到一个更大的匹配M’。3-M为G的最大匹配当且仅当不存在M的增广路径。算

idea Python remote 远程开发_斗虫虫_的博客-程序员宅基地

idea Python remote 远程开发有时候由于开发机配置太差,每次运行项目的时候又慢又卡。尝试使用远程服务器来作为运行环境,本地开发代码配置deployment远程服务器通过SFTP的连接方式,将web se’rver配置到远程服务器上,编码选择UTF-8 否则terminal可能会出现乱码;验证方式有三种分别是:密码认证ssh免密登录ssh agent配置成功后就...

随便推点

压缩感知测量矩阵详解_压缩感知随机矩阵_110500617的博客-程序员宅基地

受到stankovic教授的启发,对压缩感知测量矩阵有了更加深刻的理解,在常见的压缩感知问题中,测量矩阵经常是个随机矩阵,比如均值为0,有一定方程的高斯分布矩阵,Bernoulli随机测量矩阵,亚高斯随机矩阵等等。那么是否意味着测量矩阵就应该是个随机矩阵呢?答案是否定的,关键问题在于你的测量信号到底如何得到,这个测量矩阵其实反应的就是测量规则,换句话说,一旦测量矩阵被确定下来,这个测量规则也就跟着

ss5+proxychains基础配置步骤_yang_NP的博客-程序员宅基地

ss5+proxychains主要原理:利用proxychains在终端使用socks5代理背景介绍:由于公司内部上网权限管理比较严格,因此放置在公司内部的测试服务器只有少数可以上网。而proxychains就可以非常简单快速的设置好代理,让其它不能上网的服务器通过能上网的服务器进行上网。proxychains只需要在不能上网的机器上安装好,而能够上网的服务器,是不需要任何配置的,只要能...

Nginx反向代理服务器的配置_weixin_42745915的博客-程序员宅基地

最近研究分布式的架构, 涉及到了Nginx服务器, Nginx服务也叫反向代理服务器, 是一个高性能的HTTP和反向代理服务器, 支持众多的操作系统, 例如windows, Linux, MacOS X等; 可以实现负载均衡, Rewrite功能强大, 现阶段的电商架构大部分都是采用Nginx+ Tomcat的架构; 那么无法避免就有个问题那就是什么是反向代理呢? 其实反向代理(Reverse P...

Android 调用第三方浏览器打开_android 打开外部浏览器_我想吃辣条的博客-程序员宅基地

/** * 调用第三方浏览器打开 * * @param context * @param url 要浏览的资源地址 */public static void openBrowser(Context context, String url) { final Intent intent = new Intent(); intent.setAction(Intent.ACTION_VIEW); intent.setData(Uri.parse(url)); /.

泛函分析 第一章 度量空间_let f be a finite filed, and q(x1, · · · , xn) ∈ f_73826669的博客-程序员宅基地

参考来源于《泛函分析讲义》,张恭庆,林源渠编著,北京大学出版社文章目录第一章 度量空间压缩映像原理定义1.1.1 距离定义1.1.3定义1.1.4 闭集定义1.1.5 基本列与完备定义1.1.8 连续定义1.1.10 压缩映射定理1.1.11 Banach不动点定理——压缩映像原理第一章 度量空间压缩映像原理定义1.1.1 距离X\mathscr XX上定义一个双变量实值函数ρ(x,y)\rho(x,y)ρ(x,y)满足下列三个条件:(1) ρ(x,y)=0⇔x=y\rho(x,y)=0 \Le

docker基本网络配置:docker0网络接口、bridge模式、host模式、none模式、Container模式_docker 网络配置_滴水穿石^_^的博客-程序员宅基地

######1.docker原生网络配置######docker安装后会自动创建3种原生网络:bridge、host、none。[[email protected] ~]# docker network ls ##列出docker的网络######2.容器网络接口docker0######docker安装时会创建一个名为 docker0 的Linux bridge。[r...

推荐文章

热门文章

相关标签