Integer的源码分析_robin62211的博客-程序员宅基地

技术标签: java  数据库  

Integer的源码

 

/*

 * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.

 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.

 */

 

package java.lang;

 

import java.util.Properties;

 

/**

 * The {@code Integer} class wraps a value of the primitive type

 * {@code int} in an object. An object of type {@code Integer}

 * contains a single field whose type is {@code int}.

 *

 * <p>In addition, this class provides several methods for converting

 * an {@code int} to a {@code String} and a {@code String} to an

 * {@code int}, as well as other constants and methods useful when

 * dealing with an {@code int}.

 *

 * <p>Implementation note: The implementations of the "bit twiddling"

 * methods (such as {@link #highestOneBit(int) highestOneBit} and

 * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are

 * based on material from Henry S. Warren, Jr.'s <i>Hacker's

 * Delight</i>, (Addison Wesley, 2002).

 *

 * @author  Lee Boynton

 * @author  Arthur van Hoff

 * @author  Josh Bloch

 * @author  Joseph D. Darcy

 * @since JDK1.0

 */

public final class Integer extends Number implements Comparable<Integer> {

    /**

     * A constant holding the minimum value an {@code int} can

     * have, -2<sup>31</sup>.

     */

    public static final int   MIN_VALUE = 0x80000000;

 

    /**

     * A constant holding the maximum value an {@code int} can

     * have, 2<sup>31</sup>-1.

     */

    public static final int   MAX_VALUE = 0x7fffffff;

 

    /**

     * The {@code Class} instance representing the primitive type

     * {@code int}.

     *

     * @since   JDK1.1

     */

    public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");

 

    /**

     * All possible chars for representing a number as a String

     */

    final static char[] digits = {

        '0' , '1' , '2' , '3' , '4' , '5' ,

        '6' , '7' , '8' , '9' , 'a' , 'b' ,

        'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,

        'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,

        'o' , 'p' , 'q' , 'r' , 's' , 't' ,

        'u' , 'v' , 'w' , 'x' , 'y' , 'z'

    };

 

    /**

     * Returns a string representation of the first argument in the

     * radix specified by the second argument.

     *

     * <p>If the radix is smaller than {@code Character.MIN_RADIX}

     * or larger than {@code Character.MAX_RADIX}, then the radix

     * {@code 10} is used instead.

     *

     * <p>If the first argument is negative, the first element of the

     * result is the ASCII minus character {@code '-'}

     * (<code>'&#92;u002D'</code>). If the first argument is not

     * negative, no sign character appears in the result.

     *

     * <p>The remaining characters of the result represent the magnitude

     * of the first argument. If the magnitude is zero, it is

     * represented by a single zero character {@code '0'}

     * (<code>'&#92;u0030'</code>); otherwise, the first character of

     * the representation of the magnitude will not be the zero

     * character.  The following ASCII characters are used as digits:

     *

     * <blockquote>

     *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}

     * </blockquote>

     *

     * These are <code>'&#92;u0030'</code> through

     * <code>'&#92;u0039'</code> and <code>'&#92;u0061'</code> through

     * <code>'&#92;u007A'</code>. If {@code radix} is

     * <var>N</var>, then the first <var>N</var> of these characters

     * are used as radix-<var>N</var> digits in the order shown. Thus,

     * the digits for hexadecimal (radix 16) are

     * {@code 0123456789abcdef}. If uppercase letters are

     * desired, the {@link java.lang.String#toUpperCase()} method may

     * be called on the result:

     *

     * <blockquote>

     *  {@code Integer.toString(n, 16).toUpperCase()}

     * </blockquote>

     *

     * @param   i       an integer to be converted to a string.

     * @param   radix   the radix to use in the string representation.

     * @return  a string representation of the argument in the specified radix.

     * @see     java.lang.Character#MAX_RADIX

     * @see     java.lang.Character#MIN_RADIX

     */

    public static String toString(int i, int radix) {

 

        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)

            radix = 10;

 

        /* Use the faster version */

        if (radix == 10) {

            return toString(i);

        }

 

        char buf[] = new char[33];

        boolean negative = (i < 0);

        int charPos = 32;

 

        if (!negative) {

            i = -i;

        }

 

        while (i <= -radix) {

            buf[charPos--] = digits[-(i % radix)];

            i = i / radix;

        }

        buf[charPos] = digits[-i];

 

        if (negative) {

            buf[--charPos] = '-';

        }

 

        return new String(buf, charPos, (33 - charPos));

    }

 

    /**

     * Returns a string representation of the integer argument as an

     * unsigned integer in base&nbsp;16.

     *

     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>

     * if the argument is negative; otherwise, it is equal to the

     * argument.  This value is converted to a string of ASCII digits

     * in hexadecimal (base&nbsp;16) with no extra leading

     * {@code 0}s. If the unsigned magnitude is zero, it is

     * represented by a single zero character {@code '0'}

     * (<code>'&#92;u0030'</code>); otherwise, the first character of

     * the representation of the unsigned magnitude will not be the

     * zero character. The following characters are used as

     * hexadecimal digits:

     *

     * <blockquote>

     *  {@code 0123456789abcdef}

     * </blockquote>

     *

     * These are the characters <code>'&#92;u0030'</code> through

     * <code>'&#92;u0039'</code> and <code>'&#92;u0061'</code> through

     * <code>'&#92;u0066'</code>. If uppercase letters are

     * desired, the {@link java.lang.String#toUpperCase()} method may

     * be called on the result:

     *

     * <blockquote>

     *  {@code Integer.toHexString(n).toUpperCase()}

     * </blockquote>

     *

     * @param   i   an integer to be converted to a string.

     * @return  the string representation of the unsigned integer value

     *          represented by the argument in hexadecimal (base&nbsp;16).

     * @since   JDK1.0.2

     */

    public static String toHexString(int i) {

        return toUnsignedString(i, 4);

    }

 

    /**

     * Returns a string representation of the integer argument as an

     * unsigned integer in base&nbsp;8.

     *

     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>

     * if the argument is negative; otherwise, it is equal to the

     * argument.  This value is converted to a string of ASCII digits

     * in octal (base&nbsp;8) with no extra leading {@code 0}s.

     *

     * <p>If the unsigned magnitude is zero, it is represented by a

     * single zero character {@code '0'}

     * (<code>'&#92;u0030'</code>); otherwise, the first character of

     * the representation of the unsigned magnitude will not be the

     * zero character. The following characters are used as octal

     * digits:

     *

     * <blockquote>

     * {@code 01234567}

     * </blockquote>

     *

     * These are the characters <code>'&#92;u0030'</code> through

     * <code>'&#92;u0037'</code>.

     *

     * @param   i   an integer to be converted to a string.

     * @return  the string representation of the unsigned integer value

     *          represented by the argument in octal (base&nbsp;8).

     * @since   JDK1.0.2

     */

    public static String toOctalString(int i) {

        return toUnsignedString(i, 3);

    }

 

    /**

     * Returns a string representation of the integer argument as an

     * unsigned integer in base&nbsp;2.

     *

     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>

     * if the argument is negative; otherwise it is equal to the

     * argument.  This value is converted to a string of ASCII digits

     * in binary (base&nbsp;2) with no extra leading {@code 0}s.

     * If the unsigned magnitude is zero, it is represented by a

     * single zero character {@code '0'}

     * (<code>'&#92;u0030'</code>); otherwise, the first character of

     * the representation of the unsigned magnitude will not be the

     * zero character. The characters {@code '0'}

     * (<code>'&#92;u0030'</code>) and {@code '1'}

     * (<code>'&#92;u0031'</code>) are used as binary digits.

     *

     * @param   i   an integer to be converted to a string.

     * @return  the string representation of the unsigned integer value

     *          represented by the argument in binary (base&nbsp;2).

     * @since   JDK1.0.2

     */

    public static String toBinaryString(int i) {

        return toUnsignedString(i, 1);

    }

 

    /**

     * Convert the integer to an unsigned number.

     */

    private static String toUnsignedString(int i, int shift) {

        char[] buf = new char[32];

        int charPos = 32;

        int radix = 1 << shift;

        int mask = radix - 1;

        do {

            buf[--charPos] = digits[i & mask];

            i >>>= shift;

        } while (i != 0);

 

        return new String(buf, charPos, (32 - charPos));

    }

 

 

    final static char [] DigitTens = {

        '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',

        '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',

        '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',

        '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',

        '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',

        '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',

        '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',

        '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',

        '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',

        '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',

        } ;

 

    final static char [] DigitOnes = {

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',

        } ;

 

        // I use the "invariant division by multiplication" trick to

        // accelerate Integer.toString.  In particular we want to

        // avoid division by 10.

        //

        // The "trick" has roughly the same performance characteristics

        // as the "classic" Integer.toString code on a non-JIT VM.

        // The trick avoids .rem and .div calls but has a longer code

        // path and is thus dominated by dispatch overhead.  In the

        // JIT case the dispatch overhead doesn't exist and the

        // "trick" is considerably faster than the classic code.

        //

        // TODO-FIXME: convert (x * 52429) into the equiv shift-add

        // sequence.

        //

        // RE:  Division by Invariant Integers using Multiplication

        //      T Gralund, P Montgomery

        //      ACM PLDI 1994

        //

 

    /**

     * Returns a {@code String} object representing the

     * specified integer. The argument is converted to signed decimal

     * representation and returned as a string, exactly as if the

     * argument and radix 10 were given as arguments to the {@link

     * #toString(int, int)} method.

     *

     * @param   i   an integer to be converted.

     * @return  a string representation of the argument in base&nbsp;10.

     */

    public static String toString(int i) {

        if (i == Integer.MIN_VALUE)

            return "-2147483648";

        int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);

        char[] buf = new char[size];

        getChars(i, size, buf);

        return new String(buf, true);

    }

 

    /**

     * Places characters representing the integer i into the

     * character array buf. The characters are placed into

     * the buffer backwards starting with the least significant

     * digit at the specified index (exclusive), and working

     * backwards from there.

     *

     * Will fail if i == Integer.MIN_VALUE

     */

    static void getChars(int i, int index, char[] buf) {

        int q, r;

        int charPos = index;

        char sign = 0;

 

        if (i < 0) {

            sign = '-';

            i = -i;

        }

 

        // Generate two digits per iteration

        while (i >= 65536) {

            q = i / 100;

        // really: r = i - (q * 100);

            r = i - ((q << 6) + (q << 5) + (q << 2));

            i = q;

            buf [--charPos] = DigitOnes[r];

            buf [--charPos] = DigitTens[r];

        }

 

        // Fall thru to fast mode for smaller numbers

        // assert(i <= 65536, i);

        for (;;) {

            q = (i * 52429) >>> (16+3);

            r = i - ((q << 3) + (q << 1));  // r = i-(q*10) ...

            buf [--charPos] = digits [r];

            i = q;

            if (i == 0) break;

        }

        if (sign != 0) {

            buf [--charPos] = sign;

        }

    }

 

    final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,

                                      99999999, 999999999, Integer.MAX_VALUE };

 

    // Requires positive x

    static int stringSize(int x) {

        for (int i=0; ; i++)

            if (x <= sizeTable[i])

                return i+1;

    }

 

    /**

     * Parses the string argument as a signed integer in the radix

     * specified by the second argument. The characters in the string

     * must all be digits of the specified radix (as determined by

     * whether {@link java.lang.Character#digit(char, int)} returns a

     * nonnegative value), except that the first character may be an

     * ASCII minus sign {@code '-'} (<code>'&#92;u002D'</code>) to

     * indicate a negative value or an ASCII plus sign {@code '+'}

     * (<code>'&#92;u002B'</code>) to indicate a positive value. The

     * resulting integer value is returned.

     *

     * <p>An exception of type {@code NumberFormatException} is

     * thrown if any of the following situations occurs:

     * <ul>

     * <li>The first argument is {@code null} or is a string of

     * length zero.

     *

     * <li>The radix is either smaller than

     * {@link java.lang.Character#MIN_RADIX} or

     * larger than {@link java.lang.Character#MAX_RADIX}.

     *

     * <li>Any character of the string is not a digit of the specified

     * radix, except that the first character may be a minus sign

     * {@code '-'} (<code>'&#92;u002D'</code>) or plus sign

     * {@code '+'} (<code>'&#92;u002B'</code>) provided that the

     * string is longer than length 1.

     *

     * <li>The value represented by the string is not a value of type

     * {@code int}.

     * </ul>

     *

     * <p>Examples:

     * <blockquote><pre>

     * parseInt("0", 10) returns 0

     * parseInt("473", 10) returns 473

     * parseInt("+42", 10) returns 42

     * parseInt("-0", 10) returns 0

     * parseInt("-FF", 16) returns -255

     * parseInt("1100110", 2) returns 102

     * parseInt("2147483647", 10) returns 2147483647

     * parseInt("-2147483648", 10) returns -2147483648

     * parseInt("2147483648", 10) throws a NumberFormatException

     * parseInt("99", 8) throws a NumberFormatException

     * parseInt("Kona", 10) throws a NumberFormatException

     * parseInt("Kona", 27) returns 411787

     * </pre></blockquote>

     *

     * @param      s   the {@code String} containing the integer

     *                  representation to be parsed

     * @param      radix   the radix to be used while parsing {@code s}.

     * @return     the integer represented by the string argument in the

     *             specified radix.

     * @exception  NumberFormatException if the {@code String}

     *             does not contain a parsable {@code int}.

     */

    public static int parseInt(String s, int radix)

                throws NumberFormatException

    {

        /*

         * WARNING: This method may be invoked early during VM initialization

         * before IntegerCache is initialized. Care must be taken to not use

         * the valueOf method.

         */

 

        if (s == null) {

            throw new NumberFormatException("null");

        }

 

        if (radix < Character.MIN_RADIX) {

            throw new NumberFormatException("radix " + radix +

                                            " less than Character.MIN_RADIX");

        }

 

        if (radix > Character.MAX_RADIX) {

            throw new NumberFormatException("radix " + radix +

                                            " greater than Character.MAX_RADIX");

        }

 

        int result = 0;

        boolean negative = false;

        int i = 0, len = s.length();

        int limit = -Integer.MAX_VALUE;

        int multmin;

        int digit;

 

        if (len > 0) {

            char firstChar = s.charAt(0);

            if (firstChar < '0') { // Possible leading "+" or "-"

                if (firstChar == '-') {

                    negative = true;

                    limit = Integer.MIN_VALUE;

                } else if (firstChar != '+')

                    throw NumberFormatException.forInputString(s);

 

                if (len == 1) // Cannot have lone "+" or "-"

                    throw NumberFormatException.forInputString(s);

                i++;

            }

            multmin = limit / radix;

            while (i < len) {

                // Accumulating negatively avoids surprises near MAX_VALUE

                digit = Character.digit(s.charAt(i++),radix);

                if (digit < 0) {

                    throw NumberFormatException.forInputString(s);

                }

                if (result < multmin) {

                    throw NumberFormatException.forInputString(s);

                }

                result *= radix;

                if (result < limit + digit) {

                    throw NumberFormatException.forInputString(s);

                }

                result -= digit;

            }

        } else {

            throw NumberFormatException.forInputString(s);

        }

        return negative ? result : -result;

    }

 

    /**

     * Parses the string argument as a signed decimal integer. The

     * characters in the string must all be decimal digits, except

     * that the first character may be an ASCII minus sign {@code '-'}

     * (<code>'&#92;u002D'</code>) to indicate a negative value or an

     * ASCII plus sign {@code '+'} (<code>'&#92;u002B'</code>) to

     * indicate a positive value. The resulting integer value is

     * returned, exactly as if the argument and the radix 10 were

     * given as arguments to the {@link #parseInt(java.lang.String,

     * int)} method.

     *

     * @param s    a {@code String} containing the {@code int}

     *             representation to be parsed

     * @return     the integer value represented by the argument in decimal.

     * @exception  NumberFormatException  if the string does not contain a

     *               parsable integer.

     */

    public static int parseInt(String s) throws NumberFormatException {

        return parseInt(s,10);

    }

 

    /**

     * Returns an {@code Integer} object holding the value

     * extracted from the specified {@code String} when parsed

     * with the radix given by the second argument. The first argument

     * is interpreted as representing a signed integer in the radix

     * specified by the second argument, exactly as if the arguments

     * were given to the {@link #parseInt(java.lang.String, int)}

     * method. The result is an {@code Integer} object that

     * represents the integer value specified by the string.

     *

     * <p>In other words, this method returns an {@code Integer}

     * object equal to the value of:

     *

     * <blockquote>

     *  {@code new Integer(Integer.parseInt(s, radix))}

     * </blockquote>

     *

     * @param      s   the string to be parsed.

     * @param      radix the radix to be used in interpreting {@code s}

     * @return     an {@code Integer} object holding the value

     *             represented by the string argument in the specified

     *             radix.

     * @exception NumberFormatException if the {@code String}

     *            does not contain a parsable {@code int}.

     */

    public static Integer valueOf(String s, int radix) throws NumberFormatException {

        return Integer.valueOf(parseInt(s,radix));

    }

 

    /**

     * Returns an {@code Integer} object holding the

     * value of the specified {@code String}. The argument is

     * interpreted as representing a signed decimal integer, exactly

     * as if the argument were given to the {@link

     * #parseInt(java.lang.String)} method. The result is an

     * {@code Integer} object that represents the integer value

     * specified by the string.

     *

     * <p>In other words, this method returns an {@code Integer}

     * object equal to the value of:

     *

     * <blockquote>

     *  {@code new Integer(Integer.parseInt(s))}

     * </blockquote>

     *

     * @param      s   the string to be parsed.

     * @return     an {@code Integer} object holding the value

     *             represented by the string argument.

     * @exception  NumberFormatException  if the string cannot be parsed

     *             as an integer.

     */

    public static Integer valueOf(String s) throws NumberFormatException {

        return Integer.valueOf(parseInt(s, 10));

    }

 

    /**

     * Cache to support the object identity semantics of autoboxing for values between

     * -128 and 127 (inclusive) as required by JLS.

     *

     * The cache is initialized on first usage.  The size of the cache

     * may be controlled by the -XX:AutoBoxCacheMax=<size> option.

     * During VM initialization, java.lang.Integer.IntegerCache.high property

     * may be set and saved in the private system properties in the

     * sun.misc.VM class.

     */

 

    private static class IntegerCache {

        static final int low = -128;

        static final int high;

        static final Integer cache[];

 

        static {

            // high value may be configured by property

            int h = 127;

            String integerCacheHighPropValue =

                sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");

            if (integerCacheHighPropValue != null) {

                int i = parseInt(integerCacheHighPropValue);

                i = Math.max(i, 127);

                // Maximum array size is Integer.MAX_VALUE

                h = Math.min(i, Integer.MAX_VALUE - (-low) -1);

            }

            high = h;

 

            cache = new Integer[(high - low) + 1];

            int j = low;

            for(int k = 0; k < cache.length; k++)

                cache[k] = new Integer(j++);

        }

 

        private IntegerCache() {}

    }

 

    /**

     * Returns an {@code Integer} instance representing the specified

     * {@code int} value.  If a new {@code Integer} instance is not

     * required, this method should generally be used in preference to

     * the constructor {@link #Integer(int)}, as this method is likely

     * to yield significantly better space and time performance by

     * caching frequently requested values.

     *

     * This method will always cache values in the range -128 to 127,

     * inclusive, and may cache other values outside of this range.

     *

     * @param  i an {@code int} value.

     * @return an {@code Integer} instance representing {@code i}.

     * @since  1.5

     */

    public static Integer valueOf(int i) {

        assert IntegerCache.high >= 127;

        if (i >= IntegerCache.low && i <= IntegerCache.high)

            return IntegerCache.cache[i + (-IntegerCache.low)];

        return new Integer(i);

    }

 

    /**

     * The value of the {@code Integer}.

     *

     * @serial

     */

    private final int value;

 

    /**

     * Constructs a newly allocated {@code Integer} object that

     * represents the specified {@code int} value.

     *

     * @param   value   the value to be represented by the

     *                  {@code Integer} object.

     */

    public Integer(int value) {

        this.value = value;

    }

 

    /**

     * Constructs a newly allocated {@code Integer} object that

     * represents the {@code int} value indicated by the

     * {@code String} parameter. The string is converted to an

     * {@code int} value in exactly the manner used by the

     * {@code parseInt} method for radix 10.

     *

     * @param      s   the {@code String} to be converted to an

     *                 {@code Integer}.

     * @exception  NumberFormatException  if the {@code String} does not

     *               contain a parsable integer.

     * @see        java.lang.Integer#parseInt(java.lang.String, int)

     */

    public Integer(String s) throws NumberFormatException {

        this.value = parseInt(s, 10);

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code byte}.

     */

    public byte byteValue() {

        return (byte)value;

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code short}.

     */

    public short shortValue() {

        return (short)value;

    }

 

    /**

     * Returns the value of this {@code Integer} as an

     * {@code int}.

     */

    public int intValue() {

        return value;

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code long}.

     */

    public long longValue() {

        return (long)value;

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code float}.

     */

    public float floatValue() {

        return (float)value;

    }

 

    /**

     * Returns the value of this {@code Integer} as a

     * {@code double}.

     */

    public double doubleValue() {

        return (double)value;

    }

 

    /**

     * Returns a {@code String} object representing this

     * {@code Integer}'s value. The value is converted to signed

     * decimal representation and returned as a string, exactly as if

     * the integer value were given as an argument to the {@link

     * java.lang.Integer#toString(int)} method.

     *

     * @return  a string representation of the value of this object in

     *          base&nbsp;10.

     */

    public String toString() {

        return toString(value);

    }

 

    /**

     * Returns a hash code for this {@code Integer}.

     *

     * @return  a hash code value for this object, equal to the

     *          primitive {@code int} value represented by this

     *          {@code Integer} object.

     */

    public int hashCode() {

        return value;

    }

 

    /**

     * Compares this object to the specified object.  The result is

     * {@code true} if and only if the argument is not

     * {@code null} and is an {@code Integer} object that

     * contains the same {@code int} value as this object.

     *

     * @param   obj   the object to compare with.

     * @return  {@code true} if the objects are the same;

     *          {@code false} otherwise.

     */

    public boolean equals(Object obj) {

        if (obj instanceof Integer) {

            return value == ((Integer)obj).intValue();

        }

        return false;

    }

 

    /**

     * Determines the integer value of the system property with the

     * specified name.

     *

     * <p>The first argument is treated as the name of a system property.

     * System properties are accessible through the

     * {@link java.lang.System#getProperty(java.lang.String)} method. The

     * string value of this property is then interpreted as an integer

     * value and an {@code Integer} object representing this value is

     * returned. Details of possible numeric formats can be found with

     * the definition of {@code getProperty}.

     *

     * <p>If there is no property with the specified name, if the specified name

     * is empty or {@code null}, or if the property does not have

     * the correct numeric format, then {@code null} is returned.

     *

     * <p>In other words, this method returns an {@code Integer}

     * object equal to the value of:

     *

     * <blockquote>

     *  {@code getInteger(nm, null)}

     * </blockquote>

     *

     * @param   nm   property name.

     * @return  the {@code Integer} value of the property.

     * @see     java.lang.System#getProperty(java.lang.String)

     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)

     */

    public static Integer getInteger(String nm) {

        return getInteger(nm, null);

    }

 

    /**

     * Determines the integer value of the system property with the

     * specified name.

     *

     * <p>The first argument is treated as the name of a system property.

     * System properties are accessible through the {@link

     * java.lang.System#getProperty(java.lang.String)} method. The

     * string value of this property is then interpreted as an integer

     * value and an {@code Integer} object representing this value is

     * returned. Details of possible numeric formats can be found with

     * the definition of {@code getProperty}.

     *

     * <p>The second argument is the default value. An {@code Integer} object

     * that represents the value of the second argument is returned if there

     * is no property of the specified name, if the property does not have

     * the correct numeric format, or if the specified name is empty or

     * {@code null}.

     *

     * <p>In other words, this method returns an {@code Integer} object

     * equal to the value of:

     *

     * <blockquote>

     *  {@code getInteger(nm, new Integer(val))}

     * </blockquote>

     *

     * but in practice it may be implemented in a manner such as:

     *

     * <blockquote><pre>

     * Integer result = getInteger(nm, null);

     * return (result == null) ? new Integer(val) : result;

     * </pre></blockquote>

     *

     * to avoid the unnecessary allocation of an {@code Integer}

     * object when the default value is not needed.

     *

     * @param   nm   property name.

     * @param   val   default value.

     * @return  the {@code Integer} value of the property.

     * @see     java.lang.System#getProperty(java.lang.String)

     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)

     */

    public static Integer getInteger(String nm, int val) {

        Integer result = getInteger(nm, null);

        return (result == null) ? Integer.valueOf(val) : result;

    }

 

    /**

     * Returns the integer value of the system property with the

     * specified name.  The first argument is treated as the name of a

     * system property.  System properties are accessible through the

     * {@link java.lang.System#getProperty(java.lang.String)} method.

     * The string value of this property is then interpreted as an

     * integer value, as per the {@code Integer.decode} method,

     * and an {@code Integer} object representing this value is

     * returned.

     *

     * <ul><li>If the property value begins with the two ASCII characters

     *         {@code 0x} or the ASCII character {@code #}, not

     *      followed by a minus sign, then the rest of it is parsed as a

     *      hexadecimal integer exactly as by the method

     *      {@link #valueOf(java.lang.String, int)} with radix 16.

     * <li>If the property value begins with the ASCII character

     *     {@code 0} followed by another character, it is parsed as an

     *     octal integer exactly as by the method

     *     {@link #valueOf(java.lang.String, int)} with radix 8.

     * <li>Otherwise, the property value is parsed as a decimal integer

     * exactly as by the method {@link #valueOf(java.lang.String, int)}

     * with radix 10.

     * </ul>

     *

     * <p>The second argument is the default value. The default value is

     * returned if there is no property of the specified name, if the

     * property does not have the correct numeric format, or if the

     * specified name is empty or {@code null}.

     *

     * @param   nm   property name.

     * @param   val   default value.

     * @return  the {@code Integer} value of the property.

     * @see     java.lang.System#getProperty(java.lang.String)

     * @see java.lang.System#getProperty(java.lang.String, java.lang.String)

     * @see java.lang.Integer#decode

     */

    public static Integer getInteger(String nm, Integer val) {

        String v = null;

        try {

            v = System.getProperty(nm);

        } catch (IllegalArgumentException e) {

        } catch (NullPointerException e) {

        }

        if (v != null) {

            try {

                return Integer.decode(v);

            } catch (NumberFormatException e) {

            }

        }

        return val;

    }

 

    /**

     * Decodes a {@code String} into an {@code Integer}.

     * Accepts decimal, hexadecimal, and octal numbers given

     * by the following grammar:

     *

     * <blockquote>

     * <dl>

     * <dt><i>DecodableString:</i>

     * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>

     * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>

     * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>

     * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>

     * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>

     * <p>

     * <dt><i>Sign:</i>

     * <dd>{@code -}

     * <dd>{@code +}

     * </dl>

     * </blockquote>

     *

     * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>

     * are as defined in section 3.10.1 of

     * <cite>The Java&trade; Language Specification</cite>,

     * except that underscores are not accepted between digits.

     *

     * <p>The sequence of characters following an optional

     * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",

     * "{@code #}", or leading zero) is parsed as by the {@code

     * Integer.parseInt} method with the indicated radix (10, 16, or

     * 8).  This sequence of characters must represent a positive

     * value or a {@link NumberFormatException} will be thrown.  The

     * result is negated if first character of the specified {@code

     * String} is the minus sign.  No whitespace characters are

     * permitted in the {@code String}.

     *

     * @param     nm the {@code String} to decode.

     * @return    an {@code Integer} object holding the {@code int}

     *             value represented by {@code nm}

     * @exception NumberFormatException  if the {@code String} does not

     *            contain a parsable integer.

     * @see java.lang.Integer#parseInt(java.lang.String, int)

     */

    public static Integer decode(String nm) throws NumberFormatException {

        int radix = 10;

        int index = 0;

        boolean negative = false;

        Integer result;

 

        if (nm.length() == 0)

            throw new NumberFormatException("Zero length string");

        char firstChar = nm.charAt(0);

        // Handle sign, if present

        if (firstChar == '-') {

            negative = true;

            index++;

        } else if (firstChar == '+')

            index++;

 

        // Handle radix specifier, if present

        if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {

            index += 2;

            radix = 16;

        }

        else if (nm.startsWith("#", index)) {

            index ++;

            radix = 16;

        }

        else if (nm.startsWith("0", index) && nm.length() > 1 + index) {

            index ++;

            radix = 8;

        }

 

        if (nm.startsWith("-", index) || nm.startsWith("+", index))

            throw new NumberFormatException("Sign character in wrong position");

 

        try {

            result = Integer.valueOf(nm.substring(index), radix);

            result = negative ? Integer.valueOf(-result.intValue()) : result;

        } catch (NumberFormatException e) {

            // If number is Integer.MIN_VALUE, we'll end up here. The next line

            // handles this case, and causes any genuine format error to be

            // rethrown.

            String constant = negative ? ("-" + nm.substring(index))

                                       : nm.substring(index);

            result = Integer.valueOf(constant, radix);

        }

        return result;

    }

 

    /**

     * Compares two {@code Integer} objects numerically.

     *

     * @param   anotherInteger   the {@code Integer} to be compared.

     * @return  the value {@code 0} if this {@code Integer} is

     *          equal to the argument {@code Integer}; a value less than

     *          {@code 0} if this {@code Integer} is numerically less

     *          than the argument {@code Integer}; and a value greater

     *          than {@code 0} if this {@code Integer} is numerically

     *           greater than the argument {@code Integer} (signed

     *           comparison).

     * @since   1.2

     */

    public int compareTo(Integer anotherInteger) {

        return compare(this.value, anotherInteger.value);

    }

 

    /**

     * Compares two {@code int} values numerically.

     * The value returned is identical to what would be returned by:

     * <pre>

     *    Integer.valueOf(x).compareTo(Integer.valueOf(y))

     * </pre>

     *

     * @param  x the first {@code int} to compare

     * @param  y the second {@code int} to compare

     * @return the value {@code 0} if {@code x == y};

     *         a value less than {@code 0} if {@code x < y}; and

     *         a value greater than {@code 0} if {@code x > y}

     * @since 1.7

     */

    public static int compare(int x, int y) {

        return (x < y) ? -1 : ((x == y) ? 0 : 1);

    }

 

 

    // Bit twiddling

 

    /**

     * The number of bits used to represent an {@code int} value in two's

     * complement binary form.

     *

     * @since 1.5

     */

    public static final int SIZE = 32;

 

    /**

     * Returns an {@code int} value with at most a single one-bit, in the

     * position of the highest-order ("leftmost") one-bit in the specified

     * {@code int} value.  Returns zero if the specified value has no

     * one-bits in its two's complement binary representation, that is, if it

     * is equal to zero.

     *

     * @return an {@code int} value with a single one-bit, in the position

     *     of the highest-order one-bit in the specified value, or zero if

     *     the specified value is itself equal to zero.

     * @since 1.5

     */

    public static int highestOneBit(int i) {

        // HD, Figure 3-1

        i |= (i >>  1); //向右移动一位,然后与自己或运算,相当于使最高位的1的右边一位也置成1

        i |= (i >>  2); //把最高位1的右边三位,置成1

        i |= (i >>  4); //把最高位1的右边七位,置成1

        i |= (i >>  8); //把最高位1的右边十五位,置成1

        i |= (i >> 16); //把最高位1的右边三十一位,置成1,因为整数32位,已经足够了

        return i - (i >>> 1);   //无符号右移动一位,然后把最高位腾为0,想剪得到最高位

    }

 

    /**

     * Returns an {@code int} value with at most a single one-bit, in the

     * position of the lowest-order ("rightmost") one-bit in the specified

     * {@code int} value.  Returns zero if the specified value has no

     * one-bits in its two's complement binary representation, that is, if it

     * is equal to zero.

     *

     * @return an {@code int} value with a single one-bit, in the position

     *     of the lowest-order one-bit in the specified value, or zero if

     *     the specified value is itself equal to zero.

     * @since 1.5

     */

    public static int lowestOneBit(int i) {

        // HD, Section 2-1

        return i & -i;

    }

 

    /**

     * Returns the number of zero bits preceding the highest-order

     * ("leftmost") one-bit in the two's complement binary representation

     * of the specified {@code int} value.  Returns 32 if the

     * specified value has no one-bits in its two's complement representation,

     * in other words if it is equal to zero.

     *

     * <p>Note that this method is closely related to the logarithm base 2.

     * For all positive {@code int} values x:

     * <ul>

     * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}

     * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}

     * </ul>

     *

     * @return the number of zero bits preceding the highest-order

     *     ("leftmost") one-bit in the two's complement binary representation

     *     of the specified {@code int} value, or 32 if the value

     *     is equal to zero.

     * @since 1.5

     */

    public static int numberOfLeadingZeros(int i) {

        // HD, Figure 5-6

        if (i == 0)

            return 32;

        int n = 1;

        if (i >>> 16 == 0) { n += 16; i <<= 16; }

        if (i >>> 24 == 0) { n +=  8; i <<=  8; }

        if (i >>> 28 == 0) { n +=  4; i <<=  4; }

        if (i >>> 30 == 0) { n +=  2; i <<=  2; }

        n -= i >>> 31;

        return n;

    }

 

    /**

     * Returns the number of zero bits following the lowest-order ("rightmost")

     * one-bit in the two's complement binary representation of the specified

     * {@code int} value.  Returns 32 if the specified value has no

     * one-bits in its two's complement representation, in other words if it is

     * equal to zero.

     *

     * @return the number of zero bits following the lowest-order ("rightmost")

     *     one-bit in the two's complement binary representation of the

     *     specified {@code int} value, or 32 if the value is equal

     *     to zero.

     * @since 1.5

     */

    public static int numberOfTrailingZeros(int i) {

        // HD, Figure 5-14

        int y;

        if (i == 0) return 32;

        int n = 31;

        y = i <<16; if (y != 0) { n = n -16; i = y; }

        y = i << 8; if (y != 0) { n = n - 8; i = y; }

        y = i << 4; if (y != 0) { n = n - 4; i = y; }

        y = i << 2; if (y != 0) { n = n - 2; i = y; }

        return n - ((i << 1) >>> 31);

    }

 

    /**

     * Returns the number of one-bits in the two's complement binary

     * representation of the specified {@code int} value.  This function is

     * sometimes referred to as the <i>population count</i>.

     *

     * @return the number of one-bits in the two's complement binary

     *     representation of the specified {@code int} value.

     * @since 1.5

     */

    public static int bitCount(int i) {

        // HD, Figure 5-2

        i = i - ((i >>> 1) & 0x55555555);

        i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);

        i = (i + (i >>> 4)) & 0x0f0f0f0f;

        i = i + (i >>> 8);

        i = i + (i >>> 16);

        return i & 0x3f;

    }

 

    /**

     * Returns the value obtained by rotating the two's complement binary

     * representation of the specified {@code int} value left by the

     * specified number of bits.  (Bits shifted out of the left hand, or

     * high-order, side reenter on the right, or low-order.)

     *

     * <p>Note that left rotation with a negative distance is equivalent to

     * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,

     * distance)}.  Note also that rotation by any multiple of 32 is a

     * no-op, so all but the last five bits of the rotation distance can be

     * ignored, even if the distance is negative: {@code rotateLeft(val,

     * distance) == rotateLeft(val, distance & 0x1F)}.

     *

     * @return the value obtained by rotating the two's complement binary

     *     representation of the specified {@code int} value left by the

     *     specified number of bits.

     * @since 1.5

     */

    public static int rotateLeft(int i, int distance) {

        return (i << distance) | (i >>> -distance);

    }

 

    /**

     * Returns the value obtained by rotating the two's complement binary

     * representation of the specified {@code int} value right by the

     * specified number of bits.  (Bits shifted out of the right hand, or

     * low-order, side reenter on the left, or high-order.)

     *

     * <p>Note that right rotation with a negative distance is equivalent to

     * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,

     * distance)}.  Note also that rotation by any multiple of 32 is a

     * no-op, so all but the last five bits of the rotation distance can be

     * ignored, even if the distance is negative: {@code rotateRight(val,

     * distance) == rotateRight(val, distance & 0x1F)}.

     *

     * @return the value obtained by rotating the two's complement binary

     *     representation of the specified {@code int} value right by the

     *     specified number of bits.

     * @since 1.5

     */

    public static int rotateRight(int i, int distance) {

        return (i >>> distance) | (i << -distance);

    }

 

    /**

     * Returns the value obtained by reversing the order of the bits in the

     * two's complement binary representation of the specified {@code int}

     * value.

     *

     * @return the value obtained by reversing order of the bits in the

     *     specified {@code int} value.

     * @since 1.5

     */

    public static int reverse(int i) {

        // HD, Figure 7-1

        i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;

        i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;

        i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;

        i = (i << 24) | ((i & 0xff00) << 8) |

            ((i >>> 8) & 0xff00) | (i >>> 24);

        return i;

    }

 

    /**

     * Returns the signum function of the specified {@code int} value.  (The

     * return value is -1 if the specified value is negative; 0 if the

     * specified value is zero; and 1 if the specified value is positive.)

     *

     * @return the signum function of the specified {@code int} value.

     * @since 1.5

     */

    public static int signum(int i) {

        // HD, Section 2-7

        return (i >> 31) | (-i >>> 31);

    }

 

    /**

     * Returns the value obtained by reversing the order of the bytes in the

     * two's complement representation of the specified {@code int} value.

     *

     * @return the value obtained by reversing the bytes in the specified

     *     {@code int} value.

     * @since 1.5

     */

    public static int reverseBytes(int i) {

        return ((i >>> 24)           ) |

               ((i >>   8) &   0xFF00) |

               ((i <<   8) & 0xFF0000) |

               ((i << 24));

    }

 

    /** use serialVersionUID from JDK 1.0.2 for interoperability */

    private static final long serialVersionUID = 1360826667806852920L;

}

 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/robin62211/article/details/84766329

智能推荐

php mongodb连接类,PHP封装的简单连接MongoDB类示例_相月十久的博客-程序员宅基地

本文实例讲述了PHP封装的简单连接MongoDB类。分享给大家供大家参考,具体如下:1. 封装MongoDB类class MongoDB{private $database;private $mongo;function __construct(){$this-&gt;mongo = new MongoClient("mongodb://user:[email protected]_address:p...

SQL Server 日期相关_weixin_33910460的博客-程序员宅基地

原文: SQL Server 日期相关 原帖出处:http://blog.csdn.net/dba_huangzj/article/details/7657979对于开发人员来说,日期处理或许简单,或许很难。结合自己过往的开发经验并整合网上的例子,总结出一些日期相关的操作,供自己备用及为大家分享:...

[Android]如何做一个崩溃率少于千分之三噶应用app(23)-组件化&模块化&插件化演进_Cang_Wang的博客-程序员宅基地

大家好,我系苍王。以下是我这个系列的相关文章,有兴趣可以参考一下,可以给个喜欢或者关注我的文章。[Android]如何做一个崩溃率少于千分之三噶应用app--章节列表写了二十多篇的简书,到这里已经写了很多关于很多组件化内容的文章,但是很多对组件化,模块化,插件化的概念还是不理解。很多同学,都觉得如何划分模块,如何划分组件,如何做隔离解耦,如何做分层产

Redis集群搭建(主从-哨兵模式)-Docker_"小王"的博客-程序员宅基地

文章目录一、准备工作1.1、准备三台centos7虚拟机1.2、关闭防火墙二、安装redis2.1、三台机器先安装Docker2.2、配置加速器2.3、配置redis.conf文件一、准备工作1.1、准备三台centos7虚拟机192.168.220.131 主节点192.168.220.132 从节点192.168.220.133 从节点1.2、关闭防火墙service firewalld stop二、安装redis2.1、三台机器先安装Docker1、[[email protected]

Java标识符与变量_奔跑的牛批哥的博客-程序员宅基地_java标识符和变量

标识符的命名规则:》由26个英文字母大小写,0~9,_或$组成》数字不能开头》不可以使用关键字和保留字,但可以包含关键字和保留字》Java严格区分大小写,长度无限制》标识符不能包含空格标识符命名规范 包名:多单词组成时所有字母都小写;xxxxyyyzzz 类名、接口名:多单词组成时,所有单词首字母大写;XxxYyyZzz 变量名、方法名:多单词组成时,第一个单词首字母小写, 第二个单词开始每个单词首字母大写;xxxYyyZzz 常量名:所有字母都大写,多

PHP中smart原则,制定目标时的SMART原则不包括什么_向往真善美吧的博客-程序员宅基地

制定目标时的SMART原则不包括什么?制定目标时的SMART原则不包括“无时间限定”。SMART原则(S=Specific、M=Measurable、A=Attainable、R=Relevant、T=Time-bound)是为了利于员工更加明确高效地工作,更是为了管理者将来对员工实施绩效考核提供了考核目标和考核标准,使考核更加科学化、规范化,更能保证考核的公正、公开与公平。原则解释1.绩效指标必...

随便推点

Bitmap.creatBitmap的6个重载方法_梓子的博客-程序员宅基地

public static Bitmap createBitmap (Bitmap src)从原位图src复制出一个新的位图,和原始位图相同public static Bitmap createBitmap (int[] colors, int width, int height, Bitmap.Config config) 这个函数根据颜色数组来创建位图,注意:颜色数组的长度

宝塔面板wordpress_如何在WordPress仪表板中删除欢迎面板_cumohuo9136的博客-程序员宅基地

Do you want to remove the welcome panel in your WordPress dashboard? The welcome panel is a box added to the dashboard page of your WordPress admin area. It contains shortcuts to perform different tas...

Python:正则表达式_weixin_30321449的博客-程序员宅基地

正则表达式一、简介:正则表达式:是一种小型的、高度专业化的编程语言,(在Python中)它内嵌在Python中,并通过 re 模块实现,需要在文件最开始的地方用import re来引入。正则表达式模式被编译成一系列的字节码,然后由用C编写的匹配引擎-执行。二、字符匹配(普通字符,元字符):普通字符:大多数字符和字母都会和自身匹配&gt;&gt;&gt; re.findall('alex...

转载 cygwin x server 远程桌面_jiangyongyuan的博客-程序员宅基地

  转载自: http://easwy.com/blog/archives/linux-remote-desktop-via-cygwin-x-server/ 易水博客关注Linux, Scala, Android, Java, 开源软件和嵌入式系统 用cygwin X server实现Linux远程桌面 (for windows)5 条indo...

2021-07-08理论学习材料:小学数学教材解读_xxshxjcjdclyj的博客-程序员宅基地

《小学数学教材解读》紫阳第二小学 饶炽奎紫阳小学方元高各位老师:下午好!今天下午分享的专题是《小学数学教材解读》。为什么要分享这个专题呢?那是因为,教材决定着我们教什么,老师把它称为“教本”,学生把它称为“课本”,说明它是学习之本。教材承载着知识,是课标的具体化,体现的是国家意志,课程改革改得最多的也是教材。所以,我们的教学从研读教材入手。那么接下来的问题是:我们到底要从教材中解读出什么!这就要看学生学什么,学生学什么我们就要解读出什么!看看下面这页教材,如果是你来执教,准备让...

字符编码之ASCII、Unicode以及utf-8之间的联系与区别_WillWinwin的博客-程序员宅基地

相对于Unicode来说UTF-8最大的好处就是节约空间,因此在外部传输或者显示的时候很多时候都是用UTF-8,比如网页显示,U盘传输文件等等,而使用Unicode的好处就是很轻松的表示基本是所有的不同编码的内容,不会乱码。 接下来详细解释如下:1、由于计算机是美国人发明的,因此,最早只有127个字母被编码到计算机里,也就是大小写英文字母、数字和一些符号,这个编码表被称为ASCII编码,比如大写字

推荐文章

热门文章

相关标签